
Whispered speech to neutral speech conversion using bidirectional LSTMs

G. Nisha Meenakshi, Prasanta Kumar Ghosh

Electrical Engineering, Indian Institute of Science, Bangalore- 560012, Karnataka, India
nishag@iisc.ac.in, prasantg@iisc.ac.in

Abstract

We propose a bidirectional long short-term memory
(BLSTM) based whispered speech to neutral speech conversion
system that employs the STRAIGHT speech synthesizer. We
use a BLSTM to map the spectral features of whispered speech
to those of neutral speech. Three other BLSTMs are employed
to predict the pitch, periodicity levels and the voiced/unvoiced
phoneme decisions from the spectral features of whispered
speech. We use objective measures to quantify the quality of
the predicted spectral features and excitation parameters, using
data recorded from six subjects, in a four fold setup. We find
that the temporal smoothness of the spectral features predicted
using the proposed BLSTM based system is statistically more
compared to that predicted using deep neural network based
baseline schemes. We also observe that while the performance
of the proposed system is comparable to the baseline scheme
for pitch prediction, it is superior in terms of classifying voic-
ing decisions and predicting periodicity levels. From subjective
evaluation via listening test, we find that the proposed method is
chosen as the best performing scheme 26.61% (absolute) more
often than the best baseline scheme. This reveals that the pro-
posed method yields a more natural sounding neutral speech
from whispered speech.
Index Terms: Whispered speech, LSTM, STRAIGHT.

1. Introduction
Whispered speech is a natural mode of speech production, typi-
cally produced in pathological cases, such as laryngectomy [1],
as well as in private conversations. Whispered speech lacks
pitch due to the absence of vocal fold vibrations during its pro-
duction [2]. Several attempts have been made in the past to
convert the voiceless whispered speech into neutral speech, e.g.,
the silent speech interfaces [3]. There exist several differences
between the spectra of whispered speech and neutral speech.
Several spectral characteristics of whispered speech have been
reported in the literature including, the shift of formants [4],
gender based differences in this formant shift [5, 6], differences
in the spectra of neutral and whispered voiced and unvoiced
phonemes [7]. Therefore, whispered to neutral speech conver-
sion systems need to modify the spectrum of whispered speech,
in addition to estimating and incorporating pitch using appro-
priate voicing decisions to reconstruct neutral speech.

One class of methods to reconstruct neutral speech from
whispered speech involves the modification of the whispered
speech spectrum by shifting formants (using empirically com-
puted shift) [1, 8] followed by the incorporation pitch estimated
from formants [9]. The mixed excitation linear prediction [10]
and code excited linear prediction based vocoders [8] are used
for the synthesis. The other class of methods typically assumes
the presence of parallel neutral and whispered speech data to
train statistical models to reconstruct neutral speech from whis-
pered speech. In this case, the statistical models are required
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Figure 1: Illustration of the steps for training the BLSTMs used
to convert whispered to neutral speech.
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Figure 2: Illustration of the steps for the BLSTM based whis-
pered to neutral speech conversion system.

to predict both the spectral features and excitation parameters
of the neutral speech from whispered speech. Specifically, sta-
tistical models such as Gaussian mixture models [11] and deep
neural networks (DNN) [12] are employed for this purpose. The
speech synthesized using these methods is reported to sound
less natural [12] owing to the discontinuities introduced by the
frame level prediction of the parameters.

In this work, we propose a whispered to neutral speech con-
version system that employs bidirectional long short-term mem-
ory networks (BLSTM) [13, 14] as the statistical model and
STRAIGHT [15] as the speech synthesis module. We employ
BLSTMs since they capture the relevant information about the
underlying temporal structure in the data, using both the past
and the future contexts [16]. We use them to predict the pa-
rameterized spectrum, frame level pitch, voicing decisions and
aperiodicity levels to synthesize neutral speech from whispered
speech. Using both objective and subjective evaluations, we
find that the BLSTM based whispered to neutral system yields
a more natural sounding speech compared to the DNN based
baseline schemes. We begin with the description of the pro-
posed BLSTM based whispered to neutral speech conversion
system.

2. Proposed Method
In this work, we employ the STRAIGHT speech synthe-
sis framework for which we require estimates of the smooth
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spectrum (P ), frame level pitch (f0), voiced-unvoiced (vuv)
phoneme decisions and the periodicity levels (pl). Therefore, in
the proposed system, parallel training data of whispered speech
and neutral speech is used to train four BLSTMs, namely, P -
BLSTM, f0-BLSTM, vuv-BLSTM and pl-BLSTM to predict
the parameterized smooth spectrum, pitch, voicing decisions
and aperiodicity levels, respectively. Fig. 1 provides a block
diagram describing the training procedure for the proposed
BLSTM based whispered to neutral speech conversion system.
Firstly, we perform STRAIGHT analysis on whispered speech
to obtain an estimate of the smooth spectrum Pw. We then com-
pute the mth order mel-cepstral coefficients, C[0], . . . , C[m],
(MCEP) from Pw. Velocity (∆) and acceleration (∆∆) coef-
ficients are then appended to constitute the feature vectors cor-
responding to whispered speech. In a similar fashion, we com-
pute the mth order MCEPs from the smooth spectral estimates
of the neutral speech as feature vectors to train the P -BLSTM.
The three excitation parameters, namely f0, vuv and pl are ob-
tained from the STRAIGHT analysis of the training data corre-
sponding to neutral speech. Since the duration of the whispered
and neutral speech utterances could be different, the neutral and
whispered speech is, at first, time aligned prior to training. For
this, we employ dynamic time warping (DTW) [17] and ob-
tain the warping path between a mean and standard deviation
normalized whispered and neutral MCEPs for each training ut-
terance 1. The obtained DTW path is used to align the whis-
pered MCEP with not only the neutral MCEP but also the neu-
tral excitation parameters. The four BLSTMs are then trained
using the corresponding training data, as depicted in Fig. 1. In
the test phase, as shown in Fig. 2, given a test whispered utter-
ance we compute the features MCEP+∆+∆∆ and use the four
trained BLSTM models to predict the neutral MCEP and excita-
tion features. We obtain the smooth spectral estimate from the
predicted MCEP and feed both the spectral and the excitation
parameters to the STRAIGHT synthesis module to reconstruct
the neutral speech. We now describe the dataset used in this
work.

3. Dataset
We recorded 460 sentences taken from the MOCHA-TIMIT
database [18] from six subjects, three males (M1, M2, M3) and
three females (F1, F2, F3). In order to have parallel whispered
and neutral speech data, the subjects were asked to speak each
sentence in neutral and whispered modes separately. Record-
ings were done in a sound proof room in five sessions, where in
each session a subject would record a set of 100 utterances in
neutral and then in whispered speech. Sennheizer e822S micro-
phone was used to record the data and TES-1350A sound level
meter was used to perform a sound pressure level calibration
[19]. The native language of the six subjects is Kannada, an In-
dian language. All subjects (with an average age 20.83(±1.60)
years) are proficient in speaking, reading and writing English.
Utterances that contained improper or wrong pronunciations
were discarded after manual examination of the recordings. A
total of 428, 398, 420, 425, 431, 430 utterances were obtained
for F1, F2, F3, M1, M2 and M3, respectively. After silence re-
moval, the total duration turned out to be 125.54 minutes and
124.54 minutes for whispered and neutral speech, respectively,
across all subjects.

1It is to be noted that the mean and standard deviation normalization
is done only to find the time alignment.

4. Experiments
The MCEPs of order m = 25 and the excitation parameters are
computed every 10ms for both whispered and neutral speech.
We consider a four fold experimental setup where the data from
each subject is divided into training and test sets in a ratio 3 : 1.
From the training dataset, 10% of the data is considered as the
validation dataset on which the parameters of the BLSTM are
optimized. Specifically, we consider an architecture with an
input layer of dimension 78 (26 MCEP + 26 ∆ + 26 ∆∆),
one hidden layer with ‘tanh’ activation function and one (time-
distributed) output layer. The dimension of the output layer is
26 for P -BLSTM and 1 for the other three BLSTMs. For ex-
periments, we consider 32, 64, 128, 256 hidden layers for P -
BLSTM and 16, 32, 64 and 128 for the other three BLSTM
models. A dropout of 0.1 is used. While mean squared error
is used as the loss function for P -BLSTM, f0-BLSTM and pl-
BLSTM, binary cross-entropy is used as the loss function for
vuv-BLSTM. In each fold, we choose the model that results in
the least error over the validation dataset. Optimization is done
using Adam [20]. The implementation of the BLSTM is done
using Keras [21] and Theano [22] libraries.

4.1. Baseline Schemes

In order to compare the performance of the proposed BLSTM
based whispered to neutral speech conversion system, we
choose a DNN based system proposed by Janke et al. [12]. In
this baseline scheme (B1), the authors use DNNs to predict the
neutral MCEP and pitch from whispered MCEP. They use the
Mel Log Spectrum Approximation (MLSA) filter [23] method
for synthesis. We extend B1 into a second baseline scheme
(B2) that uses STRAIGHT for synthesis in place of MLSA fil-
ter. Specifically, a neural network architecture to model pitch,
proposed in [12], is considered to predict pl. The same archi-
tecture with a modification to the output layer is employed to
predict voicing, i.e., a softmax layer to classify the voiced and
unvoiced phonemes. Hence, B2 uses four DNNs to perform
whispered to neutral speech conversion. It is to be noted that
we compute the MCEP directly from the speech, as proposed in
[12], for the two baseline schemes.

4.2. Evaluation Metric

The performance of the proposed BLSTM based whispered to
neutral speech conversion system is compared to the two base-
line schemes via both objective and subjective evaluations.

4.2.1. Objective Evaluation

We quantify the quality of the predicted MCEP via the objec-
tive measures Mel cepstrum distortion (MCD) [24] and the dis-
tortion of the 0th cepstral coefficient (C[0] D) [12]. To com-
pute these measures, we first align the predicted MCEP and the
MCEP of the corresponding neutral speech via DTW. With re-
gard to the voicing decisions, we report the total error in the
prediction of the voiced and unvoiced phonemes. Specifically,
let the time aligned (using predicted and original MCEP) voic-
ing decisions of the original and predicted neutral speech of
length N , corresponding to the ith test utterance, be indicated
by vdoi and vdpi , respectively. The total error in the predic-
tion of the voiced and unvoiced phonemes for the ith test ut-

terance is defined as, 1
N

N∑
j=1

I(vdoi [j], vdpi [j]) × 100 where,
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I(vdoi [j], vdpi [j]) =

{
1, if vdoi [j] = vdpi [j]

0, otherwise
. The objective

measures for pitch and periodicity level for a given test utter-
ance are computed over the voiced frames alone by considering
the aligned voicing decisions of the corresponding original neu-
tral speech utterance. Let the pitch contour of the original and
predicted neutral speech corresponding to the ith test utterance,
considering only the voiced frames be indicated by f0

o
i and f0

p
i

with length M ≤ N , respectively. We compute percentage
change in the predicted and the original pitch (in logarithmic

scale) as, log

(
1
M

M∑
j=1

|f0o
i [j]−f0

p
i [j]|

f0
o
i [j]

× 100

)
. Similarly, we

compute the mean squared error (MSE) in the predicted period-
icity level using the time aligned periodicity levels of the origi-
nal (ploi ) and predicted neutral speech (plpi ) of length M ≤ N

as, MSEi = 1
M

M∑
j=1

(ploi [j]− plpi [j])2. We report these mea-

sures averaged across all the utterances of the test set, in every
fold of each of the six subjects. It is to be noted that while
the objective measures with regard to the spectral features and
pitch are identical for B1 and B2, those with regard to voicing
decisions and periodicity level are not applicable to B1.

Figure 3: Graphical user interface used for the subjective eval-
uation

4.2.2. Subjective Evaluation

To evaluate the naturalness of the synthesized speech, we per-
formed a perceptual listening test using EX-29 Direct Sound
Extreme isolation headphones. From each subject, we choose
ninety maximally non-overlapping utterances and evaluate each
utterance by three listeners. We considered eighteen listeners,
10 males and 8 females with an average age of 22.33(±1.97)
years. The listeners, proficient in reading, writing and speaking
English, were not reported to have any hearing disorder. In the
graphical user interface (GUI) developed in MATLAB R2014a,
shown in Fig. 3, we provided the input whispered speech and
the synthesized speech using the two baseline and the proposed
schemes (denoted by SYNTH1, SYNTH2 and SYNTH3). The
text corresponding to the utterance presented to the listener was
also provided in the GUI for the convenience of the listener.
The listeners were asked to listen to each of these samples and
choose the best synthesized speech based on naturalness. The
listeners could also choose none of the three schemes if they
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Figure 4: Average mel cepstral distortion (MCD) and distor-
tion of the 0th cepstral coefficient (C[0] D) across test utter-
ance in each fold of every subject obtained using the proposed
and baseline schemes. Error bars indicate standard deviation.
The MCD and C[0] D for both B1 and B2 are identical. Hence,
only one bar is shown for them.
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Figure 5: Percentage error in voiced/unvoiced (vuv) classifica-
tion for every fold of each subject. Error bars indicate standard
deviation.

deemed fit. Among the 90 utterances, we randomly chose ten
utterances and presented them again during the course of the
evaluation to check the consistency of the listener. The total du-
ration of the listening test turned out to be 31.89(±7.43) min-
utes. All the listeners are found to be at least 60% consistent.

5. Results and Discussion
Fig. 4 provides the fold-wise bar plot of the MCD and C[0]
D for each of the six subjects for the proposed and the base-
line schemes. We find that the average MCD obtained using
the proposed BLSTM based whisper to neutral speech conver-
sion system is statistically significantly lower than the baseline
schemes (t-test p-value < 1.17e-12) except in two folds of sub-
ject M1 (indicated by red ∗). In case of C[0] D as well, we find
that the proposed system exhibits a statistically significantly
lower distortion compared to the baseline schemes (p-value <
1.92e-8)2. The average error in the vuv classification (in per-
centage) across all test utterances in each fold is provided for
every subject in Fig. 5. We observe that the classification er-
ror is statistically significantly lower (p-value < 8.60e-3) using
vuv-BLSTM than that by the B2 model except in a few folds
(indicated by red ∗ in Fig. 5). This indicates that the perfor-
mance of a BLSTM based whispered vuv phoneme classifica-

2A modified B2 scheme that uses STRAIGHT spectrum based
MCEP performed better than B2 but poorer than the BLSTM. Thus,
STRAIGHT spectrum based MCEP is a better spectral representation
and is better modeled by a BLSTM compared to a DNN.
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Figure 6: (A) Percentage change in the predicted and original
pitch (in logarithmic scale), (B) Mean squared error in period-
icity level prediction, averaged across all folds of each subject.
Error bars indicate standard deviation.

Table 1: Listening Test Preference Scores

Methods B1 B2 BLSTM None
Preference (in %) 0.43 34.44 61.05 4.07

tion is superior to that by a DNN. Fig. 6 (A) and (B) plot the
objective measures to quantify the quality of the pitch and peri-
odicity level prediction, respectively. Using the B2 scheme, we
find that in one fold of F1, F3, M3, three folds of F2, M2 and in
all folds of M2, the logarithm of the absolute percentage change
of pitch is statistically significantly lower (p-value < 1.08e-2)
compared to that with the f0-BLSTM. From the figure, we find
that the prediction of pitch using a BLSTM is more subject sen-
sitive (the % difference is higher for subjects M2 and F2 com-
pared to the rest) compared to that using a DNN. From Fig. 6
(B) we find that the performance of the pl-BLSTM is superior
to that by the baseline scheme. Specifically, we observe that ex-
cept for two folds of subject M1, in all folds of all subjects the
mean squared error in periodicity level prediction is statistically
significantly lower (p-value < 1.23e-2) using the proposed sys-
tem compared to B2. The analysis with the objective measures
reveals that the proposed BLSTM based whispered to neutral
speech conversion system exhibits a superior performance in
predicting smooth spectral features and excitation parameters
such as voicing decisions and periodicity levels. We also ob-
serve that it exhibits comparable performance with the baseline
scheme for pitch prediction.

Table. 1 provides the preference scores for the different
schemes from the listening test. From the table, we find that
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Figure 7: Normalized histogram of the cutoff frequencies corre-
sponding to the 0th cepstral coefficient (C[0]) predicted using
the proposed (blue) and baseline (red dashed) scheme.

the listeners chose the proposed BLSTM based system as the
best option among all methods, 61.05% of the time. We find
that the preference score of B2 is higher than that of B1 which
indicates the superiority of using STRAIGHT over MLSA for
synthesis. We also observe that in 4.07% of the trials the lis-
teners chose none of the methods as the best. Across subjects,
we find that the absolute increase in the percentage of trials in
which the proposed BLSTM based system is chosen as the best
among three schemes is 77.78%, 9.26%, 27.41%, 16.67% and
36.29% for subjects F1, F2, F3, M1 and M3, respectively. In-
terestingly, we find that for subject M2, where the performance
of the f0-BLSTM is worse than the model in B2 (Fig. 6 (A)),
speech synthesized using B2 is chosen as the best for 7.78%
(absolute) times more than the proposed method. This under-
scores the importance of accurate pitch prediction to synthe-
size natural sounding neutral speech from whispered speech.
Feedback from listeners revealed that they preferred the syn-
thesized speech which sounded the least discontinous. Such a
perception, we hypothesize, could be attributed to the smooth-
ness of the predicted spectral features. We, therefore, analyze
the low pass nature of the predicted MCEPs by adopting the
method proposed by Ghosh et. al [25], where the cutoff fre-
quency within which 90% of the trajectory’s energy is preserved
is found. Hence, lower is the cutoff frequency, smoother is the
trajectory. We compute the cutoff frequency for each of the
26 MCEP coefficients for every test utterance in each fold for
all six subjects. We find that for most of the coefficients, the
trajectory predicted by the BLSTM model is statistically sig-
nificantly smoother (p-value < 4.08e-2) than that predicted by
the baseline scheme, in more than 70% of the 24 folds (6 sub-
jects ×4 folds) with the exception of coefficients 4, 5, 6, 7, 9
and 15. Fig. 7 provides the normalized histogram of the cutoff
frequencies of the C[0] trajectory predicted by P -BLSTM and
B2, across all folds, for each of the six subjects. From the fig-
ure, we observe that the cutoff frequency is, on average, lower
when C[0] is predicted by the BLSTM model. This indicates
that the MCEP coefficients, including the prosodic information
carrying trajectory C[0] [12], is temporally better modeled by
the BLSTM.

6. Conclusion
In this work, we propose a BLSTM based whisper to neu-
tral speech conversion system, that yields temporally smoother
spectral features compared to a DNN. Similarly, we observe that
a BLSTM based excitation parameter prediction of voicing de-
cisions and periodicity levels is superior to the baseline scheme
considered in the study. We find that the performance of the
pitch prediction using the proposed scheme is comparable to
that using the baseline scheme. The analysis of the objective
measures of the predicted neutral spectral features and exci-
tation parameters from whispered speech, in conjunction with
the results of a subjective listening test reveal that the proposed
BLSTM based system synthesizes a more natural sounding neu-
tral speech from whispered speech, compared to the baseline
schemes. Further investigation is required to extend the pro-
posed framework for the conversion of pathological whispered
speech.
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