
ASe: Acoustic Scene Embedding Using Deep Archetypal Analysis And GMM

Pulkit Sharma1, Vinayak Abrol2, Anshul Thakur1

1IIT Mandi, India
2Idiap Research Institute, Martigny, Switzerland

pulkit s@students.iitmandi.ac.in, vinayak.abrol@idiap.ch, anshul thakur@students.iitmandi.ac.in

Abstract
In this paper, we propose a deep learning framework which
combines the generalizability of Gaussian mixture models
(GMM) and discriminative power of deep matrix factoriza-
tion to learn acoustic scene embedding (ASe) for the acoustic
scene classification task. The proposed approach first builds a
Gaussian mixture model-universal background model (GMM-
UBM) using frame-wise spectral representations. This UBM
is adapted to a waveform, and the likelihood for each spectral
frame representation is stored as a feature matrix. This matrix
is fed to a deep matrix factorization pipeline (with audio record-
ing level max-pooling) to compute a sparse-convex discrimina-
tive representation. The proposed deep factorization model is
based on archetypal analysis, a form of convex NMF, which
has been shown to be well suited for audio analysis. Finally,
the obtained representation is mapped to a class label using a
dictionary based auto-encoder consisting of linear and symmet-
ric encoder and decoder with an efficient learning algorithm.
The encoder projects the ASe of a waveform to the label space,
while the decoder ensures that the feature can be reconstructed,
resulting in better generalization on the test data.
Index Terms: Archetypal analysis, deep matrix factorization,
acoustic scene classification.

1. Introduction
Environmental sounds carry a significant amount of informa-
tion about the events taking place in our surroundings. Acoustic
scene classification (ASC) is an emerging research area which
addresses the problem of automatically classifying sounds pro-
duced in environments such as cars passing by, cafeteria, or
park. ASC has a lot of potential in various applications, e.g., au-
dio based multimedia search [1], context-aware devices [2] etc.
Most of the mobile devices such as smart-phones, hearing aids
and robotic platforms are equipped with microphones. These
microphones can be used to automatically detect the environ-
ment in which these devices are used e.g., conference room or
train station and thus different signal processing schemes can
be employed [3]. In recent years, ASC is gaining momentum,
as being a subtask of the DCASE-17 challenge [4] it received
maximum submissions.

Environmental sounds due to their heterogeneous nature are
difficult to model. Hence, deep neural network (DNN) frame-
works have emerged as one of the most successful approaches,
obtaining state of the art results for ASC task. However, DNNs
often require massive amounts of labeled training data to gener-
alize well, which explains the success of generative adversarial
network (GAN) based approach proposed in [5], the top entry
of DCASE-17 challenge. Moreover, feature representations ob-
tained from DNNs are hard to interpret and lack mathematical
theory about why they work and what they capture. In contrast,
recent studies have shown that conventional machine learning

and matrix factorization based approaches also perform well
for ASC task [6]. Many of such approaches have recently pro-
gressed [7], and a few such as in [8] have proposed hybrid
ASC systems by combining conventional audio feature learning
approaches with DNNs. Matrix factorization methods such as
non-negative matrix factorization (NMF) or dictionary learning
(DL) with sparsity constraints, are a class of unsupervised fea-
ture learning approaches which describes an acoustic signal as a
linear combination of elementary functions that capture salient
acoustic information. The sparsity can be beneficial as only a
few dictionary atoms encode the signature of events that are
important in recognizing a particular acoustic scene, leading to
discriminative learning. Given a sequence of audio frames, the
obtained representation also encodes the contribution of atoms
in time, thus modeling the temporal dynamics of acoustic event.
Complimentary to discriminative modeling, one can also use
generative models e.g., Gaussian mixture model (GMM), where
feature vectors are assumed to be generated from one of a set
of underlying statistical distributions. Generative modeling can
boost performance by modeling the data variability and using
the generative parameters to define a new feature space where
discriminative models can be efficiently employed.

Motivated by this, in this paper, we propose a deep learn-
ing framework that combines the generalizability of GMMs
and discriminative power of matrix factorization to learn acous-
tic scene embedding (ASe) for the ASC task. Such a gener-
ative/discriminative combination helps to exploit the complex
structure of acoustic scenes. The proposed system achieves
comparable performance to the existing systems, while being
trained on less amount of training data as compared to DNNs.
Further, with recent algorithmic advancements, it is now possi-
ble to quickly perform matrix factorization on massive stream-
ing data sets. Leveraging the recent advancements in deep ma-
trix factorization (DMF) [9, 10], the proposed deep framework
is based on archetypal analysis (AA) [11], a form of convex
NMF, which has been shown to be well suited for audio anal-
ysis [12]. Here, instead of a single level decomposition, we
employ deep AA (DAA), by cascading several AA layers to
form a deep network and the representations obtained at the fi-
nal layer are used as a feature for ASC. In other words, data
is factorized into multiple factors each highlighting an under-
lying abstract hierarchical structure. DAA helps in effectively
learning the higher level discriminative features present in au-
dio signals for ASC task. The front-end of this discriminative
DAA model is complimented by a generative Gaussian mixture
model-universal background model (GMM-UBM) build using
frame-wise spectral representations of all the training data. This
UBM is adapted to each of the training signals and the like-
lihood for each spectral frame is extracted. In order to deal
with loss of affinity problem [13], we perform a pooling by av-
eraging few consecutive spectral frames before adapting UBM
for a given audio signal. These likelihood representations are
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Figure 1: Block diagram of training in the proposed acoustic scene classification framework.

used as input representations in the proposed DAA model. The
proposed deep model have three layers and each layer consist
of an AA module and a max-pooling module. The AA mod-
ule employs an archetypal based dictionary to derive the con-
vex representations and the max-pooling module employs au-
dio recording level max-pooling operation for dimensionality
reduction. AA, which essentially models convex hull provides
compact representation and has discriminative ability similar to
the sparsity based factorization techniques. This is due to the
inherent sparsity of the convex representation. Finally, the ob-
tained representation is mapped to a class label using a logistic
regression model. In particular, the proposed approach employ
a dictionary based auto-encoder consisting of linear and sym-
metric encoder and decoder to classify test audio signals. The
block diagram depicting the training process in the proposed
ASC framework is described in Figure 1. Experimental results
provide compelling evidences that the proposed approach per-
forms comparable to existing DNN approaches.

The rest of the paper is organization as: Section 2 briefly
reviews the existing approaches for ASC. Section 3 describes
basics of AA. The proposed DAA framework for ASe extrac-
tion is explained in section 4. Experimental observations are
discussed in section 5, and finally the paper is concluded in sec-
tion 6.

2. Existing approaches for ASC
Initial works on ASC used features inspired from other audio
classification tasks with conventional classifiers such as support
vector machines. For instance, Geiger et. al., in [14] employed
mel-frequency cepstral coefficients (MFCC), zero-crossing rate
etc. as a feature representation for ASC. In addition, image pro-
cessing based techniques are also used to derive features e.g.,
histograms of oriented gradients from the time frequency rep-
resentations for ASC [15, 16]. These features mainly focus to
derive a particular aspect of the signal, and thus lack flexibil-
ity and generalizability. While researchers have explored and
adopted many different approaches for speech/audio process-
ing, the state-of-the-art results in DCASE-17 ASC task were
obtained by DNN based methods. Although, there were many
we briefly review the best performing systems here. The perfor-
mance of a DNN system improves if the training data increases,
hence Mun et. al., employed GAN based method to generate ad-
ditional training data [5]. They employ support vector machine
(SVM) hyperplane for each class as reference for selecting sam-
ples, having class discriminative information. The usage of the
generated samples resulted in the state-of-the-art results for the
ASC task [5]. Han et. al., employed convolutional neural net-
works (CNN) for identifying an acoustic scene [17]. In order to
remove the data scarcity problem for the DNN, they proposed

various preprocessing methods which emphasize different as-
pects of an acoustic scene. These preprocessing methods high-
light different acoustic characteristics such as harmonic percus-
sive source separation, binaural representation, and background
subtraction. Multiple CNN are individually trained using dif-
ferent preprocessing methods and are combined to form an en-
semble model that results in better performance. Zheng et. al.,
proposed a CNN for ASC task that employs fusion from mul-
tiple spectral representation based systems [18]. This method
employs CNN to derive features using Fourier transform and
constant-Q transform (CQT) spectrogram. The features corre-
sponding to these spectrogram features are used to classify the
acoustic scene and results are fused using voting to improves
the overall performance for the ASC task.

Apart from DNNs, there are existing works that derive
adaptive data representation using feature learning techniques
such as NMF for the ASC task [6, 8]. In [8], authors employed
NMF to derive feature representation for a hybrid ASC system.
Here, a DNN is employed to classify both the NMF representa-
tions and the low level frequency representations independently.
In order to further improve the performance, these two indepen-
dent systems are fused together. Another factorization based
approach was proposed in [19], where AA instead of NMF was
used to derive features for ASC task. While they have similar
classification accuracies, the improvement in performance for
the approach in [8] seems mainly due to the DNN classifier.

3. Archetypal analysis and related works
The archetypal analysis involves factorization of the data matrix
X ∈ Rk×l as: X = DA, D ∈ Rk×d is the dictionary and A ∈ Rd×l

the convex representation matrix. The d atoms of the dictionary
lie on the convex hull of the data, and are the convex combi-
nation of input data points such that D = XB. An archetypal
dictionary can be learned by solving the following optimizing
function [11]:

argmin
B,A

b j∈∆l ,ai∈∆d

∑

i

‖xi−XBai‖22,

∆l , [b j � 0,‖b j‖1 = 1],∆d , [ai � 0, ‖ai‖1 = 1],

(1)

where ai and b j are the columns of A and B ∈ Rl×d, respec-
tively. The updates of both A and B can be formulated as a
quadratic programing (QP), for which efficient and fast algo-
rithms are available1. Compared to NMF, AA provides compact
representation and has better acoustic modeling capability [12].

It is worth noticing that compared to conventional matrix
factorization, AA inherently is a deep model with 3 factors, the

1 Active-set based QP solver: http://spams-devel.gforge.inria.fr
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first being the data itself. This suggest adapting AA in deep
matrix factorization framework [9,10,13], by further factorizing
the representation matrix to reveal hidden attributes of the data.
Hence, we propose a deep variant of AA, where the data X is
factorized into k + 1 factors as:

X ≈ XB1A1B2A2 . . .BkAk. (2)

DAA allows the input data to be represented using a hierarchy
of k = 1, 2, . . .K layers, given by the following factorizations:

Ak−1 ≈ Ak−1BkAk

...

A2 ≈ A2B3A3 . . .BkAk

A1 ≈ A1B2A2 . . .BkAk.

(3)

There are many advantages of DAA over conventional DMF
approaches such as: 1) dictionary atoms at each layer have ge-
ometric meaning, with first layer atoms are archetypes while
higher layers ones are prototypes; 2) the convex representa-
tions at each layer being sparse and probabilistic are directly
interpretable defining the contribution of each atom in the over-
all representation; 3) representation matrix at each layer is de-
composed in itself i.e., it is preserved throughout the network;
4) computing convex representations is much faster and stable
than sparse representations. However, learning multiple fac-
tors simultaneously in equation (2) is computationally expen-
sive. Hence, a greedy approach can be used to learn layer-wise
dictionaries, such that the representation at the (k − 1)th layer is
factorized into dictionary and the representation matrix at the
kth layer [10]. For example, the data X is factorized at first layer
as X ≈ XB1A1. The representation matrix at the first layer A1

is factorized at second layer as A1 ≈ A1B2A2, and so on.

4. DAA framework for ASC
4.1. Training and computing ASe:

In this work, log-mel based spectral representations are used as
an initial feature representation for each acoustic frame. Ini-
tially a GMM-UBM is trained using spectral representations
of all the audio frames in the training data. In order to effec-
tively capture the data distribution, GMM-UBM with k mix-
tures is trained from short-time audio frames without any tem-
poral pooling step. Once a GMM-UBM is trained, the train-
ing process involves deriving spectral features (with temporal
context) from the audio signal and adapting the GMM-UBM to
individual training recording. For each audio recording we ex-
tract four audio waveforms for processing i.e., two from both
channels, one sum of two channels and one difference of two
channels. In order to deal with loss of affinity problem [13],
we perform a pooling by averaging few consecutive spectral
frames before adapting UBM for a given audio signal. The au-
dio is divided into non-overlapping segments of length W to
model temporal context. These frames are decomposed with
a short-time Fourier transform applying a window of length
(win) with a shift (ovl). The resulting spectrogram is log trans-
formed and averaged across frames, after applying mel-filters,
resulting in a n f -D feature from each segment of audio. The
segment-wise likelihood for the spectral representation (of each
of the training waveform) is computed and stored as a matrix
X ∈ Rk×l = [X1X2 . . .Xq], such that Xi ∈ Rk×n (i = 1 . . . q) de-
note a feature matrix for ith waveform. The training matrix X
is fed to a deep factorization pipeline based on AA and audio

Table 1: Matrix dimensions and parameter settings.

X Bk A′k S W Y
k × l lk × dk dk × lk dklk × q c × dklk c × q

W win ovl k n f n
UBM - 25ms 10ms 100 64 976
Feature ex-
traction

200ms 25ms 10ms 100 64 50

d1 d2 d3 mp − width mp − stride λ

DAA 100 50 30 3 2 .25

waveform level max pooling.
The proposed framework uses a three level of hierarchical

factorization of data matrix X. In the first level the data is fac-
torized into an archetypal dictionary and the corresponding con-
vex representation as X = D1A1 = XB1A1, such that dictionary
D1 ∈ Rk×d1 and the convex representation A1 ∈ Rd1×l. Further,
a max pooling operation (denoted by mp()) is employed on the
representations obtained for each acoustic signal (on a frame by
frame basis) to obtain a matrix A′1 ∈ Rd1×l1 as:

A
′
1 = [mp(A11) mp(A12) . . .mp(A1q)], (4)

where A1i is the representation corresponding to Xi. This whole
audio waveform level pooling operation is denoted by f mp().
The proposed DAA framework employs AA and max pooling
at each layer in a hierarchy of k layers as:

X ≈ XB1A1, A
′
1 = f mp(A1)

A
′
1 ≈ A

′
1B2A2, A

′
2 = f mp(A2)

...

A
′
k−1 ≈ A

′
k−1BkAk, A

′
k = f mp(Ak).

(5)

Here, the output feature matrix for each recording has size dk ×
lk, and the dimension lk depends on pooling window size and
stride. The final fixed (dklk)-D feature obtained by flattening the
output matrix is referred as Acoustic Scene embedding (ASe).
ASe from all q waveforms are stored as a matrix S and is used
to train a classifier to obtain class labels during testing. The final
class label for a given recording is assigned based on majority
vote over its corresponding four waveforms.

4.2. Classification:

The proposed deep learning model is trained in an unsuper-
vised manner and does not require any labels to learn features
from the audio recordings, which are then used to train a clas-
sifier separately. This is in contrast to DNNs where feature
learning and classification are done in an end-to-end manner.
We adopted unsupervised learning to make the proposed model
less demanding in terms of tuning parameters and need of large
amount of labeled training data. Once a final representation is
obtained for an audio segment, it can be mapped to a class label
using a trained logistic regression model. To this aim the pro-
posed approach employs an autoencoder, which is trained with
the representation obtained via deep factorization as input to its
encoder and the corresponding class label as the encoder’s out-
put. The testing phase involves deriving a deep representation
for a given test signal and using the encoder to map this repre-
sentation to a class label. The auto-encoder consisting of linear
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Table 2: Comparison of the classification accuracy (CA) of the proposed method with the existing methods for the ASC task.

ASe GAN-A [5] CNN-H [17] CNN-G [20] CQT-Z [18] NMF-B [8]
CA (%) 79.3 83.3 80.4 81.5 77.7 69.8

KUK-D [21] DSNMF [9] LEH-L [22] PEK-P [23] KGP-W [24] GMM-AA [19]
CA (%) 71.1 72.4 73.8 72.6 67.0 65.7

and symmetric encoder and decoder, where the encoder projects
the ASe of a recording to the label space, while the decoder en-
sures that the feature can be reconstructed, resulting in better
generalization on the test data. This is achieved by optimizing
the following objective:

argmin
W
‖S −W∗WS‖2F s.t. WS = Y, (6)

where Y is the label space with each column in Rc for c classes
with entry 1 corresponding to true class and 0 elsewhere. As-
suming tied weights i.e., W∗ = WT , one can simplify and regu-
larize the autoencoder training as:

argmin
W
‖S −WT Y‖2F + λ ‖WS − Y‖2F , (7)

where λ is a parameter that controls the losses of the decoder
and encoder respectively. Eq. (7) is in standard quadratic form,
has only one tuning parameter λ and can be transformed into
well-known Sylvester equation, having fast and efficient algo-
rithms to obtain the solution [25].

5. Experimental Observations
5.1. Dataset:

In this work, we use the dataset for acoustic scene classification
in DCASE-17 challenge, which contain 13 hours of urban audio
scenes [4]. This data consists of 15 different acoustic scenes
recorded using binaural microphones.

5.2. Evaluation:

The training-development-evaluation splits are kept the same as
provided in the challenge protocol. For clarity of readers all the
experimental parameters and dimensions are tabulated in Ta-
ble 1, and the these parameters are obtained after 4-fold cross
validation on development set. The proposed DAA pipeline re-
sults in 150-D ASe for each audio waveform. The performance
of the proposed and existing ASC system is measured in terms
of average classification accuracies on evaluation data.

5.3. Results and discussion:

The classification accuracy of the proposed framework and its
comparison with existing methods for the DCASE-17 ASC task
is provided in Table 2. Our system achieved an accuracy of
86%±0.5 (95% C.I.) averaged across 4 different folds using the
provided development dataset. Thus we achieved an improve-
ment of 11.2% over the DCASE-17 baseline system.

The proposed ASe method lags behind the top performers
of the ASC DCASE-17 challenge [5], labeled as GAN-A. How-
ever, we would like to emphasize that Mun et. al., in [5] em-
ploys GAN to augment the training set. The performance of the
proposed method is comparable to the one proposed in [17] (la-
beled as CNN-H), which uses various pre-processing methods
to highlight different acoustic characteristics of the data. How-
ever, the proposed ASe method outperforms the CNN based

ASC method based on multiple spectrograms fusion as pro-
posed in [18] (labeled as CQT-Z). Thus, the proposed frame-
work ASe provides better result than the DNN if there is no data
augmentation in the training data, as in case of CQT-Z. On the
contrary, for the case of data augmentation during training the
performance of the proposed ASe framework is not at par with
those of DNN as in GAN-A. Hence, including a pre-processing
enhancement step data augmentation will further improve the
performance of the proposed approach. The proposed method
is also outperforming other systems submitted for the DCASE-
17 ASC task, labeled as KUK-D, LEH-L, PEK-P, GMM-AA,
KGP-W as proposed in [21], [22], [23], [19] and [24], respec-
tively.

In addition, we have observed that the performance of the
proposed method is better than the NMF based method pro-
posed in [8] (labeled as NMF-B). This is because DAA in-
volve hierarchical factorization which results in better discrim-
inative features. Also in case of AA the dictionary atoms lie
on the boundary of convex hull resulting in compact represen-
tation, compared to the case of NMF where atoms lie outside
convex hull. In addition, the pooling operation employed in the
proposed framework both during generative and discriminative
modeling helps in learning invariant features. To investigate
this, we replace the DAA pipeline of the proposed approached
with a recently proposed deep semi-NMF approach [9] with
max-pooling (labeled as DSNMF). Experimental results con-
firm that AA analysis results in better performance than NMF
and is inherently better suited for ASC task.

We have performed experiments by extracting features us-
ing the CNN model labeled as CNN-G) pre-trained on audio
set [26] (a dataset with 632 audio events), with a SVM classifier.
The details of the CNN architecture are available in [20]. It has
been observed that CNN-G perform slightly better than the pro-
posed model, as expected since it’s trained on a larger dataset.
However, the performance of CNN-G is still not comparable to
the state-of-the-art GAN-A method which is well adapted for
DCASE-17 dataset. This shows that the proposed approach can
be extended to large-scale audio classification and we defer this
for future work.

6. Conclusions
In this paper, we proposed a novel deep learning framework
that combines the generalizability of GMM and discriminative
power of DMF to learn ASe features for the ASC task. Here,
a UBM model build using the training data is used to derive
the likelihood for each frame of an audio signal, which is then
used in the DAA pipeline. The proposed DAA model also em-
ployed an audio recording level max-pooling that reduces the
dimensionality, in addition to providing abstracted form of the
information. The ASe of the audio recording is projected to the
label space using the encoder of an auto-encoder, while the re-
construction in decoder helps in better generalization of the test
data. Experimental results on the ASC task of DCASE-17 chal-
lenge demonstrate that the performance of the proposed frame-
work is comparable to the existing state-of-the-art methods.
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