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Abstract
In this paper, we propose a language-independent end-to-end ar-
chitecture for prosodic boundary prediction based on BLSTM-
CRF. The proposed architecture has three components, word
embedding layer, BLSTM layer and CRF layer. The word em-
bedding layer is employed to learn the task-specific embeddings
for prosodic boundary prediction. The BLSTM layer can effi-
ciently use both past and future input features, while the CRF
layer can efficiently use sentence level information. We inte-
grate these three components and learn the whole process end-
to-end. In addition, we investigate both character-level embed-
dings and context sensitive embeddings to this model, and em-
ploy an attention mechanism for combining alternative word-
level embeddings. By using an attention mechanism, the model
is able to decide how much information to use from each lev-
el of embeddings. Objective evaluation results show the pro-
posed BLSTM-CRF architecture achieves the best results on
both Mandarin and English datasets, with an absolute improve-
ment of 3.21% and 3.74% in F1 score, respectively, for intona-
tional phrase prediction, compared to previous state-of-the-art
method (BLSTM). The subjective evaluation results further in-
dicate the effectiveness of the proposed methods.
Index Terms: prosodic boundary prediction, BLSTM-CRF, at-
tention, context sensitive embeddings, end-to-end

1. Introduction
Prosody structure plays an important role in both naturalness
and intelligibility of speech [1]. It splits an utterance into
prosodic units which can be easily understood by people. Even
the newly developed speech synthesis architecture, WaveNet
[2], still required the prosodic features derived from the tex-
t. Therefore, identifying the phrase boundaries of different
prosodic units from text is crucial in speech synthesis.

Previous researches on automatic prediction of prosodic
boundaries could be classified into two main categories. One fo-
cuses on the aspect of feature engineering. These studies inves-
tigate a great number of features and their relevance to prosodic
boundaries prediction [3–7]. Recently, some syntactic features
[8, 9] and embedding features [10–12] have been employed to
augment or replace the traditional linguistic features (like POS,
word-terminal syllables etc.). The other category focuses on the
aspect of modeling methods. Some statistical machine learning
methods, like maximum entropy, conditional random field (CR-
F) and deep recurrent neural network (RNN) [13–18], have been
investigated. Among these methods, the best reported results in
shallow and deep model were achieved with CRF [15] and bi-
directional long-short term memory (BLSTM) recurrent neural
network [10–12], respectively.

With the previous researches on prosodic boundary pre-
diction, this task has been accomplished by dividing it into t-

wo stages. The first stage is to extract rich features from raw
texts [3–12], while the second stage takes as input the rich
features and predicts corresponding boundary for each word.
Even the newly developed methods [10–12] had to transform
the raw texts to word embeddings first before feeding them into
the prediction model. This two-stage procedure is often time-
consuming and language-specific, since it requires much expert
linguistic knowledge to define linguistic features [7–9]. In this
paper, we integrate these two stages and learn the whole pro-
cess end-to-end, which removes a major bottleneck in modeling
prosodic boundary for new languages.

Different from [10–12] (which directly took as input the
pre-trained word embeddings), we add an embedding layer in
our proposed architecture to induce task-specific word embed-
dings for prosodic boundary prediction. Besides that, [10–12]
still treated words as atomic units and ignored any surface or
morphological similarities between different words. However,
in many languages such as Chinese, the meaning of a word is
also related to its composing characters. To take advantage of
this regularity, we investigate character-level extension to this
model and use an attention mechanism for combining alterna-
tive word-level embeddings. In addition, the word- or character-
level embeddings captures only the semantic and syntactic in-
formation of a word. However, in many natural language pro-
cessing (NLP) tasks [19], it’s essential to represent not only the
meaning of a word, but also the word in context. Therefore,
we use a bi-directional language model (LM), pre-trained on a
large, unlabeled corpus to compute the embeddings of contex-
t at each position in the sequence (hereafter context sensitive
embeddings) and use it in the prosodic boundary prediction.

In our previous research [12], we trained CRF- and
BLSTM-based model separately and then made fusion at
decision-level. This greatly increased the complexity of the
training process. Therefore, a complementary research we fo-
cus on here is to combine BLSTM and CRF to form a BLSTM-
CRF model. This model can take advantages of both: a BLST-
M layer can efficiently use both past and future input features;
while a CRF layer can efficiently use sentence level information
to make the boundary prediction.

In this paper, we propose a language-independent end-to-
end architecture for prosodic boundary prediction based on
BLSTM-CRF. Our contributions can be summarized as fol-
lows. (1) We propose a novel BLSTM-CRF based architecture
for prosodic boundary prediction. The architecture combines
feature induction and prosodic boundary prediction in a uni-
fied framework to learn the whole process end-to-end. (2) We
apply an attention mechanism to combine both character em-
beddings and context sensitive embeddings with the word-level
embeddings features. (3) Our proposed method is language-
independent, which can be extended to other languages without
any expert linguistic knowledge to define linguistic features.
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2. BLSTM-CRF based end-to-end model
Fig.1 shows the general architecture of the word-level BLSTM-
CRF based end-to-end model for prosodic boundary prediction.
The first layer of the architecture is an embedding layer, which
maps the raw input words into word embeddings for process-
ing by subsequent layers. After the embedding layer, there is
a BLSTM-CRF based layer. The layer receives a sequence of
word embeddings as inputs, and predicts a label (Break or No
Break) corresponding to each of the input words. The whole
architecture is learned jointly.

2.1. Embedding layer

Unlike [10–12], which directly took as input the pre-trained
word embeddings (The word embeddings wouldn’t be updated
during model training.), we add an embedding layer to induce
task-specific word representation, i.e., the pre-trained word em-
beddings would be fine-tuned for prosodic boundary predic-
tion task. For simplicity, we consider words as indices in fi-
nite dictionary D of N unique word tokens. An input sentence
w1, ..., wT of T words is thus transformed by the first embed-
ding layer into a sequence of word embeddings x1, ..., xT , by
applying the lookup table operation. In this work, a pre-trained
word embedding model presented in Section 5.2 is employed to
generate the initial dictionary D.

Lookup 
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Figure 1: The general architecture of word-level BLSTM-CRF
based end-to-end model for prosodic boundary prediction.

2.2. BLSTM-CRF model

Inspired by the successful use of BLSTM [10–12] and CRF
[15] in prosodic boundary prediction, we employ a hybrid ar-
chitecture (BLSTM-CRF) to take the advantages of both. The
BLSTM-CRF based architecture was used in many NLP tasks
and achieved the state-of-art performance [20–22].

2.2.1. BLSTM

As shown in Fig.1, the word embeddings generated by the em-
bedding layer are given as the inputs to two LSTM [23] compo-
nents moving in opposite directions through the text. For each
time step t, each LSTM takes as the input the hidden state from
previous time step, along with the word embedding from cur-
rent step xt, and outputs a new hidden state. The final represen-
tations of a word by BLSTM [24] are obtained by concatenating

the hidden representation from both directions, resulting in rep-
resentations that are conditioned on the whole sequence:
−→
h t = LSTM(

−→
h t−1, xt);

←−
h t = LSTM(

←−
h t+1, xt);

ht = [
−→
h t,
←−
h t]

(1)

where LSTM is the implementation of LSTM [25].

2.2.2. CRF

To produce the label predictions, a simple and common way is
to use the hidden representation ht to make independent pre-
diction for each word, such as [11]. But for prosodic bound-
ary prediction task, there are dependencies between successive
tags and thus it is beneficial to model and decode each sentence
jointly. Accordingly, we add a CRF layer at the output of the
proposed architecture (Fig.1), which allows the network to look
for the most optimal path through all possible sequences. Dur-
ing training, the model is then optimized by maximizing the
score of the correct tag sequence y = (y1, y2, ..., yT ), while
minimizing the scores for all other sequences:

E = −s(y) + log
∑

ỹ∈Ỹ

es(ỹ) (2)

where s(y) is the CRF score for a sequence y, and Ỹ represents
all possible tag sequences.

3. Character-level representation
In [12], we have compared the performance of character-level
models with word-level models for prosodic boundary predic-
tion, and found models that operate exclusively on characters
were not yet competitive to word-level models. Therefore, in-
stead of fully replacing word embeddings, we employ an atten-
tion mechanism to allow the model to take advantage of infor-
mation at both granularity levels in this paper.
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Figure 2: Combining character-level embeddings with word-
level embeddings using an attention mechanism.

3.1. Character-level components

The general flowchart of the method to combining character em-
beddings with word embeddings is shown in Fig.2. The individ-
ual characters of a word are mapped to character embeddings
(c1, ..., cm) by applying the lookup table operation, then they
are encoded by a BLSTM:
−→
h ∗i = LSTM(

−→
h ∗i , ct);

←−
h ∗i = LSTM(

←−
h ∗i+1, xt) (3)

The last hidden state from both direction are then concate-
nated to form an alternative representation h∗ for each word that
built from individual characters:

h∗ = [
−→
h ∗m,
←−
h ∗1] (4)

48



3.2. Combining with regular word-level embeddings

We use an attention mechanism [22] to adaptively control the
balance between word-level (x) and character-level (h∗) em-
beddings. As shown in Fig.2, these two vectors (x and h∗) are
added together using a weighted sum, where the weights are
predicted by a two-layer network:

z = σ(W (3)
z tanh(W (1)

z x+W (2)
z h∗) (5)

x̃ = z · x+ (1− z) · h∗ (6)

where W (1)
z , W (2)

z and W (3)
z are weight matrices for calculat-

ing z, σ() is the logistic function with values in the range [0, 1],
and x̃ is the new word representation. The model could dynam-
ically learn how much information to use from the character-
level or word-level component by different vector value of z.

4. Context sensitive embeddings from LM
In many NLP tasks including the prosodic boundary prediction,
it’s essential to represent not only the meaning of a word, but
also the word in context. Therefore, we explore to use an unsu-
pervised method to learn context sensitive embeddings from a
LM, which requires no additional annotated training data.

4.1. Language model (LM)

Given a sequence of text w = (w1, ..., wT ), a language model
(LM) computes the probability of w as:

p(w1, ..., wT ) =
T∏

t=1

p(wt|(w1, ..., wT−1)) (7)

We use bi-directional LSTM LM [26] to capture both past
and future context here. At time step t, a forward LSTM LM re-
ceives inputwt and predictswt+1. Using Eq.8, it first computes
representation xt of wt. Given this representation and previous
state

−→
h LM

t−1 , it produces a new state
−→
h LM

t and predicts w(t+1):
−→
h LM

t = LSTM(
−→
h LM

t−1 , xt) (8)

wt+1 = g(DT · −→h LM
t ) (9)

where g is a softmax function over the dictionary D. A back-
ward LSTM LM could be implemented in an analogous way
to a forward LM and produces backward context sensitive em-
beddings

←−
h LM

t . After pre-training the forward and backwards
LM separately, we remove the top layer softmax and concate-
nate the forward and backward context sensitive embeddings to
form bi-directional context sensitive embeddings:

hLM
t = [

←−
h LM

t ;
−→
h LM

t ] (10)

Since the context sensitive embeddings are used to compute
the probability of next words in a bi-dirctional LM, they are
likely to encode both semantic and syntactic informatic roles of
word in context.

4.2. Integration into prosodic boundary prediction

Our final system uses the bi-directional context sensitive em-
beddings hLM

t as additional inputs for the prosodic boundary
prediction. Instead of simply concatenating hLM

t with the new
word representation x̃, we found that using an attention mecha-
nism that weights all the embeddings in a sentence gains more
benefits. Therefore, the context sensitive embeddings hLM

t are
combined with the new word representations x̃ using a dynam-
ic weighting mechanism which have been introduced in Section
3.2.

5. Experiments and result analysis
5.1. Dataset

We evaluate the proposed methods on both Mandarin and En-
glish dataset. These two datasets are both recorded for speech
synthesis task. The prosodic boundaries were labelled by three
expert annotators by both listening the utterances and reading
the transcriptions. Before annotation, they were trained sever-
al times to achieve most of the annotations. The average label
consistency between all three annotators is 87.6%. The train-
ing/validation/test split is 8:1:1 for all the experiments. The de-
scription of each dataset and their preprocessing are as follows:

Mandarin: a dataset with 60,000 sentences. Prosodic
boundaries (prosodic word (PW), prosodic phrase (PPH) and
intonational phrase (IPH)) were then labelled. This hierarchical
prosodic structure [5] is widely employed in Mandarin.

English: a dataset with 10,000 sentences. Only the intona-
tional phrase (IPH) boundary was labelled in this dataset.

5.2. Experimental setting

For Mandarin, 15 GBytes Mandarin text corpus [27] is collect-
ed to pre-train embeddings using word2vec [28]. Both character
and word embeddings dimension are set to 100 for Mandarin.
For English, we use 300-dimensional pre-trained word embed-
ding trained on Google News [29]. The dimension of character
embeddings is set to 50 and initialized randomly for English.
These two text corpora are also used to pre-train the LM.

All the BLSTM-related architectures (including the LM)
have two hidden layers; each layer contains 160 memory blocks
in each direction. Parameters of the proposed models are opti-
mized using AdaDelta [30] with default learning rate at 0.001.
To mitigate overfitting, the dropout method [31] is employed to
regularize our model and the dropout rate is set at 0.5 through
all the experiments.

For Mandarin, different models are trained to predict differ-
ent level of prosodic boundaries, and the predicted boundary yl
rom the lower level is used as an input feature (concatnated to
the final word representation, ie., [x̃; yl] for the current bound-
ary prediction. Based on these, the following systems are built.
All the systems are trained by Theano [32] toolkit.

1. CRF: Traditional linguistic features are used for CRF
based prosodic boundaries prediction. These features include
POS tags, the length of words etc. that were presented in [12] .

2. BL: Pre-trained word embeddings are directly used as in-
put features (like [10–12] ) for BLSTM based prosodic bound-
aries prediction without an embedding layer.

3. BC: Adding a CRF layer on the top of the system BL.
4. WB: Adding an embedding layer to initialize and fine-

tune the word embeddings at the input of system BC.
5. CC: Adding character-level components by an atten-

tion mechanism from Section 3 to system WB.
6. CA: Adding context sensitive embeddings by an atten-

tion mechanism from Section 4 to system CC.

5.3. Results in Mandarin dataset

5.3.1. Evaluation of the BLSTM-CRF model

To evaluate the effectiveness of the proposed BLSTM-CRF
model, we compare the results of system BC with two baseline
systems CRF and BL. System BL serves as a strong baseline
system here as it achieved state-of-the-art performance in previ-
ous researches. System BC significantly outperforms these two
baseline systems on all three prosodic boundaries, especially in
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higher boundaries (with an absolute gain of 1.69% in F1 score
at the IPH level prediction). Even we find this improvement is
more obvious and with a less model complexity than that of in
our previous work [12] (1.14% in F1 score) where we trained
CRF- (system CRF) and BLSTM-based (system BL) model-
s separately and then made linear fusion at decision-level. It
can be explained by linear fusion method is just a linear com-
bination of two single models, while the proposed BLSTM-
CRF model can take full advantages of BLSTM and CRF, with
BLSTM could use both past and future input features and CRF
could use sentence level sequence information.

Table 1: F1 score for different systems in Mandarin.

Systems CRF BL BC WB CC CA

PW 95.46 95.60 96.01 96.26 96.49 96.87
PPH 79.39 80.15 81.49 81.84 82.18 82.95
IPH 77.54 78.88 80.57 81.00 81.39 82.09

5.3.2. Evaluation of embedding layer

An observation of the results for system BC and WB, shows that
there is an improvement in F1 score when adding an embedding
layer for the prosodic boundary prediction, rather than using
pre-trained embeddings as inputs directly. This validates our
hypothesis that adding an embedding layer could induce task-
specific embeddings for the prosodic boundary prediction, since
the parameters in the embedding layer are fine-tuned to predic-
t the prosoidc boundaries during training. More importantly,
after adding embedding layer (system WB), we can combine
feature induction and prosodic boundary prediction in a unified
end-to-end framework and thus avoid the two-stage processes
that were required in system BC.

5.3.3. Evaluation of character-based components

Tab.1 shows that system CC achieves performance superior to
system WB. This indicates the necessity for taking into account
of the character components. This can be explained by the fact
that character components may also carry some semantic infor-
mation, which is useful for prosodic boundary prediction, since
a Chinese word with the similar characters may have similar
meaning, such as ”危险” (danger) and ”惊险” (thrill).

5.3.4. Evaluation of context sensitive embeddings

As shown in Tab.1, compared to system CC, the system CA
(which considers context sensitive embeddings) outperforms
the former on all evaluations. And this is a statistically sig-
nificant increase over state-of-the-art method (BL), with an ab-
solute increase of 3.21% at the IPH level prediction. This indi-
cates that the added context sensitive embeddings could provide
much richer representation for prosodic boundary prediction.
Meanwhile, the attention mechanism for dynamically deciding
how much context sensitive embeddings information to use al-
lows the model to better control the balance between the word
representations, giving it an advantage in the experiments.

5.4. Extension to other language

To demonstrate our proposed methods’ ability to generalize to
different languages, we test our methods on English dataset and
the results are presented in Tab.2. A similar pattern that shown
in Mandarin could be seen in English as well. Especially, it’s
noticed that adding character-based components (CC) can bring
substantial gains in English, with an absolute gain of 0.94%

in F1 score (compared to system WB). Such improvement is
much more pronounced than that in Mandarin (0.39%). This
can be explained by morphemes (root, prefix or suffix) in En-
glish carrying much semantic information, and the character-
level components in English have the potential of capturing
morpheme patterns, thereby improving generalization represen-
tation of words. Compared to previous state-of-the-art methods
(system BL), system CA shows an absolute increase of 3.74% at
the IPH level prediction. The substantial gains gotten in English
dataset can in a way show our proposed methods are language-
independent, which can be extended to other languages without
any expert linguistic knowledge to define linguistic features.

Table 2: F1 score for different systems in English.

Systems CRF BL BC WB CC CA

IPH 75.24 75.78 77.44 77.79 78.73 79.52

5.5. Subjective evaluation results

We further conducted an AB preference test on the natural-
ness of the synthesized speech. We compared system CA (that
achieves the best performance in F1 score) with system BL (the
previous state-of-the-art methods). A set of 20 sentences was
randomly selected from test set with different prosodic bound-
ary prediction results and speech was generated through a typ-
ical BLSTM-based TTS system. A group of 14 subjects were
asked to choose which one was better in terms of the natural-
ness of synthesis speech. The percentage preference is shown
in Fig.3. We can clearly see that the proposed method (system
CA) can achieve better naturalness of synthesis speech as com-
pared to the baseline system BL.

Figure 3: The preference of AB test on Mandarin and English
dataset, with confidence level of 95% and p-value < 0.0001.

6. Conlusions
In this paper, we present a BLSTM-CRF based language-
independent end-to-end architecture for prosodic boundary pre-
diction. We first show that the embedding layer is able to
learn task-specific embeddings for prosodic boundary predic-
tion. Then, we show that the BLSTM-CRF model can efficient-
ly use both past and future input features thanks to the BLSTM
layer, and can also use sentence level information thanks to a
CRF layer. Finally, we investigate both character-level embed-
dings and context sensitive embeddings to our models and em-
ploy an attention mechanism for combining alternative word-
level embeddings. In future, we wish to explore the use of our
proposed methods for other aspects of prosody prediction such
as sentential stress prediction for speech synthesis.
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