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Abstract
Speech sound disorders (SSDs) are the most prevalent type of
communication disorder among preschoolers. The earlier an
SSD is identified, the earlier an intervention can be provided
to potentially reduce the social/academic impact of the disor-
der. The challenge, lies in early identification of such disor-
ders. In this study 29 carefully selected words were produced
by 165 children from 3-6 years of age. The audio record-
ings, were collected by parents using a mobile application /plat-
form. ”Ground truth” child status as ’typically developing’
vs ’at risk’ was based on a percentage of consonants correct-
revised growth curve model. State-of-the-art speech process-
ing/speaker recognition models were employed along with our
clinical group verification framework. Results showed that text-
dependent i-Vector models were superior to both text depen-
dent and text-independent Gaussian Mixture Models (GMMs)
for correct classification of children. Fusing individual word, i-
Vector models provides insight into word and consonant group-
ings that are more indicative of ’at risk’ child speech.
Index Terms: speech processing, machine learning, clinical
screening, automatic screening, child speech, speech disorders,
voice disorders, speaker verification, growth curve model, mo-
bile application

1. Introduction
Recent advancements in Speech[1, 2] and Speaker Recognition
[3] have brought speech technology within the realm of human
performance. Voice based interfaces to portable devices like
Apple’s Siri, Google Voice Recognition, Amazon’s Alexa and
Microsoft’s Cortana have introduced a new age of hands-free
human-computer interaction. Speech Recognition involves rec-
ognizing sounds produced at the phoneme, word or sentence
level. Speaker recognition can include speaker identification or
speaker verification. In speaker identification, we determine if
a given speaker belongs to a known (closed-set) or unknown
(open-set) group of speakers, while in speaker verification, we
test if a given speech utterance belongs to the specified speaker.
For speaker verification we need two models, the speaker model
and an impostor model. The impostor model is comprised
of speakers other than the test speaker and is also known as
the Universal Background Model (UBM). The model with the
higher score is considered to be the test speaker’s model. The
UBM can be seen as the background data for initializing base
parameters and has also been used for speaker dependent adap-
tation of speaker and impostor models.

Apart from voice search and dialing, biometrics and law en-
forcement, these technologies are used in healthcare for medi-

cal dictation/transcription, speech synthesis for people with im-
paired speech, text-to-speech for those who are visually im-
paired, understanding subject or pathological traits through
speech etc. Speech processing and machine learning tech-
niques have been used to detect speech disorders and/or their
co-morbid conditions such as Alzheimers disease [4], Parkin-
sons disease [5, 6, 7], Amyotrophic Lateral Sclerosis (ALS) [8],
mild-Traumatic Brain Injury (m-TBI) or Concussion [9]. Most
of these techniques involve extracting speech features and ap-
plying some machine learning models to them in order to detect
pathological speech and thus to identify the disorder or medical
condition. Measures such as Speech Intelligibility Rate [6, 10]
(speech intelligibility X speaking rate) and Unified Parkinson
Disease Rating Scale score [7] (questionnaire based score) have
also been predicted using Support Vector Regression and Deep
Neural Network Regression. Similarly, isolated vowel sounds
have been used to predict the presence of concussion [9] us-
ing Support Vector Machine. These technologies have also re-
sulted in development of portable devices [5] to process signals
and provide feedback for speech therapy. Such innovations in
healthcare utilization, coupled with the success of speech and
speaker recognition technology as mentioned above, hold great
promise for applying these mature systems and algorithms to
problems in the clinical domain.

Speech Sound Disorders (SSDs), in particular, affect be-
tween 3-16% of US children [11] and could be due to a variety
of causes. SSDs may be associated with dysarthria, apraxia,
cleft palate, down syndrome, or autism. However, the majority
of SSDs in children are idiopathic, that is, there is no known
cause or co-morbidity. Most young children exhibit speech
sound errors that are developmental and will resolve sponta-
neously over time. Differentiating between developmental er-
rors that will resolve and errors that indicate an SSD requires
considerable training and practice. Thus, there is a need for a
portable, accurate, well-researched and simple screening tool to
ensure that children with SSDs are identified as early as pos-
sible. Population-based ’clinical group’ modeling knowledge
will help clinicians manage and monitor children who are ’at
risk’ for SSDs.

The goal of this work was to determine if state-of-the-art
speaker recognition feature representations can provide signifi-
cant improvements over GMMs[12] in objectively identifying
children who warrant further monitoring or in-depth clinical
evaluation. We utilize the text-dependent setting for generating
i-Vectors as it has resolved content mismatch [13, 14] issues
between enrollment and test data for short utterances and per-
forms well at word [15] level. To the best of our knowledge,
this work represents the first attempt at screening children who
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are ’at risk’ of SSDs using text-dependent i-Vectors following
a speaker verification framework. Additionally, we fuse groups
of words with similar characteristics to create a more represen-
tative test for our system, which can also identify susceptible
phoneme classes among children with SSDs.

2. Child Speech Dataset
2.1. Data Collection

We analyzed audio recordings of 29 words from 165 children,
between 3-6 years of age, collected by their parents. All par-
ticipants were living in the Dallas metropolitan area. The In-
stitutional Review Board at the University of Texas at Dallas
Office of Research Compliance has granted approval for enroll-
ment of up to 500 participants for this project. The recordings
were collected in MPEG-4 AAC format at 44 kHz sampling
rate with 96 kbps bit rate using an iOS application developed
by our team. Figure 1 shows an example of the interface used
to collect recordings within the application. Visual and ortho-
graphic representations of the words inform the users of the
targets. When the red ’record’ button is pushed, an auditory
prompt asks: ’What do you call this?’ followed by a double
beep, which identifies the beginning of the recording. The com-
pleted recordings are automatically transferred to a secure Ama-
zon server (Amazon Simple Storage Service).

Measure Mean SD Range

Age (months) 51 11 36-78

PCC (%) 83 16 10-100

Table 1: Descriptive statistics of the sample

2.2. Speech Science behind Words and Ground Truth La-
beling

Target productions included 14 consonant-vowel-consonant
(CVC) monosyllabic words (e.g., hat, soap), four /s/ cluster
monosyllabic words (e.g., spoon, star), and 11 multisyllabic
words (e.g., caterpillar, elephant) to challenge the child’s devel-
oping vocabulary. These words include a combination of early,
mid, and late developing consonants and key consonant clus-
ters, which have been shown to discriminate between children
with and without SSDs. A certified speech-language pathol-
ogist transcribed each participants word productions and cal-
culated the percentage of consonants correct (PCC)[16]. A
growth curve model [17] was used to determine age-based cut-
off scores for PCC. Children whose scores fell more than 1.5
standard deviations below the mean for their age were classified
as ’at-risk’ or ’SSD’; this included 64 out of the 165 children
(39% of the sample).

2.3. Data Preprocessing

Each child provided 20-29 recordings each being 1-10 sec long.
Noisy utterances with parents talking, other children in the
background, toys etc. or use of articles/phrases different from
the target word or repeated words were manually clipped to the
recording of the target word. Also incorrect words and files
with no sound, were discarded. Our final dataset had 4685 total
words from 165 children.

Figure 1: Illustrative snapshot of mobile application while

recording child speech.

3. Method
Once data pre-processing is complete, Mel-Frequency Cepstral
Coefficient (MFCC) features are extracted from the raw audio.
Then, the features are transformed to an i-Vector representation.
The i-Vectors are used to classify the utterance as belonging to
the SSD category or the normal speech acquisition (NSA) cate-
gory using L2-Logistic Regression and Gaussian Backend clas-
sifiers. For word-level modeling, individual utterance scores
are compared through a group verification framework. Finally,
every word is grouped into different word and consonant cat-
egories. Scores of the words belonging to the same category
are fused within the same group verification framework and
this process provides further results. Our toolkit Multi Session-
Acoustic Identification (MS-AcID)[18] is used for each of the
following steps.

3.1. Feature Extraction and i-Vector representation

Thirteen dimensional MFCC including delta and double delta
features are used. A GMM with 256 mixture components is
learned using the MFCC features which is further transformed
to i-Vector representation of 50 dimensions. i-Vectors repre-
sent speech GMM parameters by decomposing them in terms of
speaker dependent and speaker independent components. The
speaker independent component is the GMM-Universal Back-
ground Model (UBM, represented by m) and consists of a sam-
ple of data that includes a different set of users than those used
for development and testing. The speaker dependent compo-
nent includes the ’total variabilty extractor’ matrix (T ) which
extracts identity-Vector or i-Vector (w) which is unique for each
speaker. Thus, every speech utterance representation (M ) can
be expressed as combination of both components.

M = m + Tw (1)

3.2. Backend Models

3.2.1. L2-Regualrized Logistic Regression (L2LR)

Previous investigations [18] on L2LR for multi-session speaker
verification scenario using MFCC features showed competitive
results. Given a pair of i-Vector features and clinical group c,
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we follow a log-linear probability model to learn weights v in
order to classify i-Vectors w into NSA (-1) or SSD (1) class.

P (c = ±1|w, v) =
1

1 + exp(−c(vTw))
(2)

3.2.2. Gaussian Backend (GB)

Gaussian Backend classifier models the i-Vectors for both the
clinical groups as a Gaussian distribution and measures the pos-
terior log-likelihood for each group c as:

log p(c|w) = −1

2
wT Σ−1w+wT Σ−1mc− 1

2
mT

c Σ−1mc +k

(3)
where w are the i-Vectors, Σ is the shared covariance matrix
for both the clinical groups, mc is the mean matrix for clinical
group c and k is a constant.

3.3. Clinical Group Verification

Our clinical group verification framework[12] extends speaker
verification to the group level by transforming utterance level
scores to clinical group level. For this, we sum individual word
scores for the SSD and NSA models and assign the utterance
to the model with the higher score. This transformation also
involves converting the likelihood value scores to distance mea-
sures which is the absolute difference between the min weighted
error rate threshold[19] (MWERTH) and our score. MWERTH
measured using BOB toolkit[20], is calculated as follows,

MWERTH = cost× FAR + (1− cost)× FRR (4)

where FAR stands for False Acceptance Rate, FRR stands for
False Rejection Rate, cost is parameter we assign in range
(0.4,0.6) with step 0.1.

3.4. Data splits for round robin

Each of the 165 children are randomly split into sets of 32, 32,
33, 33, 35 and each of the 29 words provide 29 such group-
ings. If a child is missing a word in it’s audio collection due to
missing or incorrect recording, that child cannot be included for
modeling using that word. We train five different models with
(3/5)th data in training, and ensure each set is used for valida-
tion and testing exactly one time.

4. Results and Discussion
Results over each of the five test sets inferred after cross-
validation are presented in terms of sensitivity[21] (true positive
rate), specificity[21] (true negative rate) and accuracy. Sensitiv-
ity represents the fraction of children who are ’at risk’ and are
correctly predicted as such. Specificity represents the fraction
of children who are ’typically developing’ and are predicted as
such. Accuracy stands for the total fraction of children that have
been correctly predicted based on PCC ”ground truth” classifi-
cation.

4.1. Individual word

Figure 2 reports the maximum accuracy obtained for an indi-
vidual word in classifying the children, among different com-
binations of cost and classifier. Words ’hat’ (96.83%), ’juice’,
’cat’, ’elephant’ and ’nose’ provide the best results in terms of
sensitivity and all of these words except ’juice’ (6th) are in top
5 in terms of accuracy as well.

4.2. Consonant and word grouping categories

We calculate scores for different combinations of words con-
taining early developing, middle developing, late developing
consonants (164 children), s-clusters (163 children), multisyl-
labic words, high accuracy group and low accuracy group words
by adding the predictions of individual words. This resolves
a lot of the tie predictions and we are able to compare metric
values for different groups to understand their effectiveness in
discerning ’typically developing’ vs ’at risk’ child speech. As
can be seen in Figure 3, sensitivity was highest for words with
’s-clusters’ and words with later-developing consonants; sen-
sitivity for the remaining word types was substantially lower.
These groupings provide more balanced results in the form of
considering words which might have been discarded due to ties
for more than 25% utterances.

4.3. Explaining the ties

The Gaussian Mixture Model which is used to create i-Vectors
for single word phoneme-diversity data, uses a large number of
mixtures (256) in order to represent every child’s varied rep-
resentation. However, for some words this causes sparsity of
the ’i-Vector/ total variability extractor’ matrix, not generating
i-Vectors for the particular test set cross validation. Words with
a ’variability matrix sparsity problem’ for less than 75% of the
utterance predictions of that word are considered for the model
comparison. Utterances of words within this group without i-
Vectors, default to being classified as ’Ties’ by our verification
framework. With the goal of ensuring lower false negatives, we
would classify these children as ’at risk’. Thus, we have also
provided the tie accuracy (Figures 2, 3) of such classifications
and these are around 39% (except for Hat in figure 2).

4.4. Comparison with prior work

Our previous work[12] on screening ’at risk’ child speech us-
ing text-independent Gaussian Mixture Models (1024 mixtures,
60 dimensional MFCC features) peaked at an accuracy level
of 79.88%, sensitivity level of 68.25% and specificity level
of 87.13%. These results were better than text-independent i-
Vector models. All the word-level text-dependent i-Vector mod-
els (as shown in Figure 2) perform better in terms of sensitiv-
ity and all but Caterpillar and Scissors are better in terms of
accuracy. An equivalent comparison of our i-Vector models
with text-independent GMMs, in terms of number of mixtures
(256) and MFCC dimensions (39) (accuracy = 66.67%, sensi-
tivity=51.56%, specificity=76.24%), shows a better margin of
performance for i-Vectors. The best performing text-dependent
GMM model (256 mixtures, 39-dimensional MFCC), which
is for the word Van (Accuracy=75.32%, Sensitivity=70.49%,
Specificity=78.35%), is well below the top performing word-
dependent i-Vector models and is consistent with previous
work, signifying the benefit of i-Vectors over GMMs in this set-
ting.

5. Conclusions and Future work
The strong speaker footprint provided by word-level i-Vectors
on matched content provided good accuracy, sensitivity results
for deviations from typical speech, confirming the efficacy of
text-dependent representations for dealing with the challenge
of short utterances. Additionally, our solution presented the
first attempt at using state-of-the-art i-Vector representations to
discriminate between developmental speech sound errors and
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Figure 3: Subject-specific accuracy, sensitivity and specificity on test set for consonant and word grouping categories with cost = 0.5

(best on development set) in MWERTH using L2LR.

errors indicative of a possible speech-sound disorder. Our clin-
ical group verification framework easily adapted to accumulat-
ing scores for each word and came up with predictions for each
child based on different word groupings. The metrics calcu-
lated provided insight for some words and specific phoneme
types that were more discerning of ’at risk’ child speech. This
knowledge could ultimately be useful clinically in monitoring
child speech development. It could also be relevant to design-
ing datasets for speech-based artificial intelligence solutions to
assist clinicians. We would like to make our research practi-
cally viable, by handling noise, automatic parsing etc. From a

speech science perspective, we plan further analyses to identify
additional speech patterns representative of ’at risk’ speech.
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