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Abstract

This paper introduces the Voices Obscured in Complex Envi-
ronmental Settings (VOiCES) corpus, a freely available dataset
under Creative Commons BY 4.0. This dataset will promote
speech and signal processing research of speech recorded by
far-field microphones in noisy room conditions. Publicly avail-
able speech corpora are mostly composed of isolated speech at
close-range microphony. A typical approach to better repre-
sent realistic scenarios, is to convolve clean speech with noise
and simulated room response for model training. Despite these
efforts, model performance degrades when tested against un-
curated speech in natural conditions. For this corpus, audio
was recorded in furnished rooms with background noise played
in conjunction with foreground speech selected from the Lib-
riSpeech corpus. Multiple sessions were recorded in each room
to accommodate for all foreground speech-background noise
combinations. Audio was recorded using twelve microphones
placed throughout the room, resulting in 120 hours of audio per
microphone. This work is a multi-organizational effort led by
SRI International and Lab41 with the intent to push forward
state-of-the-art distant microphone approaches in signal pro-
cessing and speech recognition.

Index Terms: corpus, speech recognition, speaker recognition,
data collection, LibriSpeech

1. Introduction

SRI International and Lab41, In-Q-Tel, are proud to release
the VOICES Obscured in Complex Environmental Settings
(VOICES) corpus, a collaborative effort that brings speech data
in acoustically challenging reverberant environments to the re-
searcher. Clean speech was recorded in rooms of different sizes,
each having distinct room acoustic profiles, with background
noise played concurrently. The corpus contains the source au-
dio, the retransmitted audio, orthographic transcriptions, and
speaker labels. The ultimate goal of this corpus is to advance
acoustic research by providing access to complex acoustic data.
The corpus will be released as open source, Creative Commons
BY 4.0, free for commercial, academic, and government use.
Datasets for speech research are typically expensive, lim-
ited in scope, and behind paywalls. Synthetic data can be
created by superimposing audio samples from datasets of
isolated speech and noise and using software to generate
reverberation[1]. Unfortunately, these techniques do not accu-
rately represent the acoustics of real-world environments and
dynamic noise. On the other hand, publicly available datasets
collected in real environments often use few speakers[2]. Data
competitions like CHiME have provided increasingly more re-
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alistic data, though with limited number of speakers. Early
CHiME datsets[3] were constructed by convolving clean speech
with a simulated room response (based on measured data for 2
rooms), assuming the speaker to be 2m from the recorded au-
dio. This signal was then mixed with the recorded multi-source
background noise recorded in the rooms. Extended work[4]
later added simulated location changes within a 20cmX20cm
area and small 5 cm head movement translation. Inte-
grated recording in real environments was introduced in later
challenges[5, 6], but this included only 4 speakers in four dif-
ferent settings, recorded at close range microphony via 1, 2, or
6 microphones. Data for this year’s CHiME challenge includes
40 speakers recorded at homes, using binaural microphones and
microphone arrays placed in each room. In contrast, VOiCES
includes 300 speakers, a range of distractor noise types, various
types of microphes at a distance, and a rotation range of 180°
for the foreground loudspeaker position. This article reports re-
sults from recordings done in two rooms. The full corpus will
include additional rooms; these recordings are ongoing.

Successfully deploying speech and acoustic signal process-
ing algorithms in the field hinges on access to realistic data.
To this end, audio for the VOICES corpus was recorded un-
der conditions that better represent real-use situations. These
recordings provide noisy, reverberant audio with the intended
purpose of promoting acoustic research including speech pro-
cessing (speaker identification and acoustic detection, speech
recognition), audio classification (event and background clas-
sification, speech/non-speech), and acoustic signal processing
(source separation and localization, noise reduction, general en-
hancement, acoustic quality metrics). In the remainder of this
paper, a detailed description of the VOiCES corpus is provided,
including model baselines for automatic speech recognition and
speaker identification. Section 2 describes the collection effort
itself, Section 3 provides some insight into the statistics of the
dataset, and Section 4 outlines model baselines that were run
on the dataset. The corpus will be available on Amazon Web
Services, where details on use cases and a download link will
be provided.

2. Dataset Collection

The main focus when developing the VOiICES corpus was to
provide an open-source dataset centered on distant microphone
collection under realistic conditions. Pre-recorded foreground
speech and background noise were played in two furnished
rooms with different acoustic profiles (reverberation, HVAC
background, echo, etc.) and was recorded by 12 distant micro-
phones. Recording rooms were windowed and carpeted, with
mostly bare walls and a bare ceiling, furnished with tables and
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Figure 1: Microphone and loudspeaker configuration (not to
scale) used for recording sessions in (a) room 1 (146” x 107”)
and (b) room 2 (225" x 158”). The foreground loudspeaker
(at its 90° position), orange rectangle, was placed in a corner
of the room, and speakers playing noise, blue squares, were
placed with their cones directed toward the center of the room.
Studio and lavalier microphones are shown as large (dark) and
small (light) green circles; microphone ID and distance from
foreground loudspeaker are listed in Table 1.

chairs. Four recording sessions were held in each room: one for
each distractor noise type (television, radio, or babble) played
concurrently with the foreground speech, and one session with
foreground speech only. One hour of only distractor noise or
ambient room background noise was recorded at the end of each
session. This resulted in over 120 hours of recorded speech per
microphone, for a total of 374,688 audio files and 1440 hrs of
recorded speech.

2.1. Audio Sources

The audio for foreground speech and distractor noise was se-
lected from sources either in the public domain or under a cre-
ative commons attribution license that permits data derivatives
and commercial use.

2.1.1. Foreground Speech

A total of 15 hours (3,903 audio files) were selected from
LibriSpeech[7], a corpus of audiobooks in the public domain.
All audio contains English read speech. Audio was taken from
300 speakers in the “clean” data subsets, with an even split be-
tween females and males. At least three minutes of speech were
selected from each speaker, with at least one minute from three
different book chapters - an amount sufficient for speaker iden-
tification tasks. LibriSpeech files use a sample rate of 16kHz,
16-bit precision, and Free Lossless Audio Codec (FLAC) en-
coding. Selected files were corrected for DC offset, normalized
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based on their peak amplitude, and converted to WAV format.
The selected audio files were concatenated together with 2 sec-
onds of intervening silence into a continuous audio file. The
loudspeaker playing the foreground speech was on a motorized
rotating platform. The order of the individual audio files was
randomized, to guarantee that there was no correlation between
a particular human speaker and a position of the loudspeaker.
Signals to evaluate the room response were added at the begin-
ning of each session. These included a steady tone, a rising
tone, and a transient noise. The final concatenated source file
was 19 hours long.

2.1.2. Distractor Noise

Audio was recorded under four different noise conditions: one
without any added noise (ambient room noise only) and three
with a distractor noise played simultaneously with the fore-
ground speech. The distractor noises were television, music, or
overlapping speech from multiple speakers (referred to here as
babble). During recording sessions, the audio for television or
music was played from a single loudspeaker; babble was played
from three noise-dedicated loudspeakers. An extra hour of just
distractor noise was recorded at the end of each session.

Television noise was selected from movies and television
shows in the public domain[8, 9]. Audio from 76 videos was
extracted in M4A format and converted to WAV with a 16kHz
sample rate and 16-bit precision. Five-minute excerpts were
chosen from each audio file and each excerpt was normalized
to its peak amplitude. Depending on the length of the source
audio, 5 to 8 excerpts were taken from each movie or show,
randomized, and concatenated into a single 20-hour audio file.

Music noise was selected from the MUSAN corpus[10].
All music files are in the public domain or under a Creative
Commons license. Any music files having no derivative (ND)
or non-commercial (NC) license restrictions were omitted from
the sample set. The music files were randomized and concate-
nated into a single 20-hour audio file. Due to the large vari-
ability in signal amplitudes for different genres of music, the
concatenated audio file was run through the compander tool in
the SoX audio utility, combining compression and expansion of
the signal dynamic range. This ensured a more uniform music
volume throughout the recording sessions and a more consistent
signal-to-noise ratio.

Babble noise was constructed using the ’us-gov” subset of
the MUSAN corpus[10]. This subset contains audio recording
excerpts of various US government meetings; all are in the pub-
lic domain. Each excerpt is about 5 minutes long and was nor-
malized to its peak amplitude. Babble tracks were constructed
by randomizing and concatenating together meeting excerpts
into 20-hour audio files and then mixing three audio files into
one. Three babble tracks were created and were played out of
three noise-dedicated loudspeakers (i.e. at least nine overlap-
ping speakers) simultaneously with the foreground speech.

2.2. Recording Setup

Two different rooms were used for recording: room-1 with di-
mensions 146” x 107 (x 107 height) and room-2 with dimen-
sions 225” x 158” (x 109” height). Twelve microphones were
placed in strategic locations throughout the room: 7 cardioid dy-
namic studio microphones (SHURE SM58), 4 omnidirectional
condenser lavalier microphones (AKG 417L), and 1 omnidirec-
tional dynamic lavalier microphone (SHURE SM11). Paired
studio and lavalier microphones were placed at four different
positions: (1) Behind the foreground loudspeaker, (2) on a table



Table 1: Microphone type, location, distance from foreground loudspeaker (s) and height (h) for room-1 and -2 configurations.

Mic ID (type) Location Room-1 (s,r) Room-2 (s, h)
01 (studio), 02 (lavalier)  near on table (387, 42”) (807, 39”)
03 (studio), 04 (lavalier)  far on table (727, 42”) (1317, 39”)
05 (studio), 06 (lavalier)  across room (1197,707) (2287, 70”)
07 (studio), 08 (lavalier)  behind loudspeaker (297,707) (297, 70”)
09 (lavalier) partially obstructed, table (587, 28”) (1097, 257)
10 (lavalier) on ceiling, clear (757, 105”) (1287, 105™)
11 (lavalier) on ceiling, fully obstructed (757, 106”) (1287, 106™)
12 (lavalier) fully obstructed, wall (1307, 127) (1167, 10”)

directly in front of the foreground loudspeaker, (3) on a table
in front of the foreground loudspeaker at a farther distance than
(2), and (4) across the room from the foreground loudspeaker.
The remaining four lavalier microphones were placed in other
locations in the room, fully or partially obstructed by a physi-
cal barrier. Distances between the foreground loudspeaker and
microphones are listed in Table 1. All audio was played on
high-quality speakers; one speaker was reserved for foreground
speech, and three others were used to play distractor noise. A
schematic of speaker and microphone placement in both rooms
in shown in Figure 1.

The foreground speaker was placed 43” from the floor on
a robotic platform that automatically rotated the position of the
foreground speaker by ten degrees every hour, spanning a total
of 180 degrees. The rotating platform’s step motor was suf-
ficiently shielded to prevent recording background noise from
the motor movement. The motivation to have a non-static au-
dio source was to emulate common human behavior that occurs
during conversations such as head movement or walking, that is
not captured in other datasets.

A PreSonus StudioLive RML32AI digital mixer and
PreSonus Capture recording software were used to play and
record the audio. A sound pressure meter, placed close to mi-
crophone 01, was used to measure the playback audio and adjust
volume levels on the PreSonus mixer for both the foreground
audio (65 dB) and distractor noise ("50 dB). All channels were
sample synchronous. Each recording session lasted 20 hours
(19 hours of foreground speech and 1 hour of only distractor or
ambient noise). The recording sessions were segmented accord-
ing to the source files from LibriSpeech, yielding 1440 hours of
audio (347,688 audio files) across all microphones and sessions.
Audio was recorded with a 48kHz sample rate and 24-bit preci-
sion in WAV format with PCM encoding, and is also available
in 16kHz and 16-bit precision in WAV format. The corpus also
contains the source audio files (16kHZ sample rate, 16-bit pre-
cision, WAV format).

3. Data Statistics

To obtain an assessment of the statistics of the corpus, the du-
ration, minimum and maximum amplitude, root mean square
(RMS) energy, and signal-to-noise ratio (SNR) were calculated
for all audio files in the corpus. Statistics were calculated using
a combination of the SoX utility and SRI’s in-house utilities.

The average and median duration for all data subsets is
15.62s and 15.97s, respectively, with a standard deviation of
1.91s. This is evidence that the automatic audio segmentation
worked correctly and that we can directly compare noisy files
with source files.

The RMS, measuring the amplitude of the audio file relative
to the digital system’s maximum level (with maximum value at
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0 decibels relative to full scale - dBFS), was consistent across
the various subsets. Average values were measured between
-27.0 and -27.5 dBFS, indicating the playback volume was con-
sistently set for all recordings.

The minimum and maximum amplitudes represent the low-
est and highest amplitude for samples in a given audio file, on
a normalized scale of +1. These ranged between -0.5 to 0.5
across all data subsets, showing reasonable use of the digital
recording systems levels. The average minimum and maximum
amplitude levels for the source audio were -0.93 and 0.91.

The signal-to-noise ratio (SNR) measures the strength of
a primary signal relative to the background noise. Differences
in SNR were evident between rooms and distractor noises, and
degraded with increasing distance between the foreground loud-
speaker and microphone. The average SNR for audio recorded
in room-1 and -2 was 22.19 dB and 19.50 dB, respectively.

Table 2 shows the calculated SNR for audio recorded un-
der different noise conditions as compared to the source audio’s
SNR. The SNR significantly degrades for audio recorded at a
distance in a real acoustic environment, even without distractor
noise. A decrease of 18 dB was observed for this case. The
addition of noise further decreases the SNR. The SNR for mi-
crophones close to and behind the foreground loudspeaker was
22.3 dB, and for those at mid- and far-distance, it was 20.5 dB.

Table 2: Measured SNR for the source audio and audio
recorded at a distance with and without distractor noise.

TV
222

Babble
18.4

Music
19.2

No distractor
23.6

Source
41.7

SNR

4. Model Baselines

SRI's in-house automatic speech recognition (ASR) and
speaker identification (SID) systems were used to examine the
recorded data. This provides data validation for analytics and a
point of reference for future model implementations.

4.1. Automatic speech recognition (ASR)

The ASR system was run on a subset of data: audio from
lavalier microphones when the foreground loudspeaker was po-
sitioned at 90° (directly aligned with microphones on table).
The ASR system was built using the Kaldi Speech Recognition
Toolkit [11]. It uses filterbank features and a time delay neural
network (TDNN) and was trained on 500 hours of segmented
English speech, which included data collected under DARPA’s
Translation Systems for Tactical Use (TRANSTAC) program
and SRI proprietary data. Training audio is included twice, once
in its original form and a second with artificially added rever-



beration. Because no full test or development subset of data
from LibriSpeech is included in the VOiICES corpus, a direct
comparison with published ASR results using LibriSpeech is
not possible. It is possible, however, to make a rough compari-
son with results using the dev-clean LibriSpeech dataset. Pub-
lished results for this subset achieved 4.9% and 7.8% word error
rate (WER), for models trained on LibriSpeech and on the Wall
Street Journal data, respectively[7]. The SRI system achieved a
9.3% WER.

Table 3 shows the WER when the foreground speaker is at
90° (centered) as a function of distractor noise. Results show
a sharp increase in WER for data recorded in realistic acous-
tic environments. The WER for audio recorded by distance
microphones with no added distractor noise is 19.0% - more
than double the WER on the source audio. Added distractor
noise degrade the performance further. The worst performance
is on audio with babble noise, as this type of noise contains only
speech and easily confuses the ASR system.

Table 3: WER as a function of distractor noise type for room-1
and room-2 (mics 02, 04, 06, and 08), with foreground loud-
speaker at 90°, obtained from in-house SRI ASR system.

TV
29.3

Babble
33.0

Music
27.6

No distractor
19.0

Source
9.3

WER

In general the ASR performance is dependent on the dis-
tance between the foreground loudspeaker and microphone, and
on individual room acoustics, as depicted in Figure 2. Results
are shown for microphones 02, 04, 06 in both rooms when
the foreground loudspeaker is at 90°. There is an increase in
WER with increased distance between the microphone and fore-
ground loudspeaker. Differences in WER for microphones in
room-1 and room-2 that are at comparable distances show the
effect of each room’s acoustic environment.

55

room-1 (90°)
room-2 (90°)

0 50 100 150 200
Position from foreground speaker (in.)

250

Figure 2: The WER performance is affected by distance from
the foreground loudspeaker, as well as room acoustic profile.

4.2. Speaker identification (SID)

A state-of-the-art SID system from SRI was run on the VOiCES
corpus[12]. The model used is a Universal Background Model
(UBM) identity vector (i-vector) based system [13, 14], with a
probabilistic linear discriminant analysis (PLDA) [15] as back-
end classifier. A gender-independent PLDA was used to com-
pute the scores of the speaker recognition system. The model
was trained using the PRISM dataset [16]. The equal error rate
(EER), describing the value where false positives equal false

1569

negatives, is used as the metric for the SID system performance.
For our experimental setup, we ensured enroll and test audio
segments corresponded to different book chapters from the orig-
inal corpus. Speech segments were on average 14s long for both
enroll and test subsets. Results are shown for microphones 01
and 02 (Close), microphones 03 and 04 (Mid), and microphones
05 and 06 (Far).

Table 4 shows the impact of microphone distance on the
SID performance. In this experiment, enrollment was per-
formed on clean source data, and the EER is shown when testing
on a variety of distant conditions. In order to highlight the effect
of distance alone, no distractor noises were used. We observe
that the EER of this UBM-IV system doubles when comparing
the source audio (5.72%) to audio from the close microphones
for both rooms (10.7%-10.9%), and it almost triples for the far
room microphone (15.1%-16.6%).

Table 4: Impact of microphone distance on the performance of
the UBM-1V speaker recognition systems EER (%).

Mics Source Close Mid  Far
Rml 5.72 10.7 13.0 15.1
Rm2 5.72 10.9 13.2  16.6

Table 5 shows the effect of distractor noise on SID perfor-
mance. In order to mimic a realistic test case, speakers were
enrolled using a recording from the close lavalier microphone
(Close) in room-1 with no distractor noise. The test segments
originate from all microphones and were recorded in room-2
with different types of background noise. We observe that dis-
tractor noise degrades the EER by 2% absolute for music and
television and 3.5% absolute for babble. This is perhaps be-
cause it is very speech-like, but also possibly because babble
was the only distractor played out of three separate loudspeak-
ers.

Table 5: Impact of distractor noise on the performance of the
UBM-1V speaker recognition systems in terms of EER (%).
Each condition has above 18k /2.8 M target/impostor trials.

TV
19.3

Babble
20.9

Music
19.2

No distractor
17.2

Distractor
UBM-1V

5. Conclusions and Future Work

The VOICES corpus provides audio data that closely resem-
ble acoustic conditions found in real recording environments -
distant microphones, background noise, and reverberant room
acoustics. The corpus can serve as a test and development set
for research in the areas of speech and acoustics. It will enable
the development of robust acoustic models that can better per-
form in the wild. By making the corpus publicly available, SRI
International and Lab41 hope to promote and advance acoustic
research on event and background detection, source separation,
speech enhancement, source distance and sound localization,
speech activity detection, as well as speaker and speech recog-
nition. Data presented here correspond to phase I data collec-
tion. The corpus will be augmented with further data collection
in phase II, that will include additional rooms and more chal-
lenging distractor noise profiles.



[1]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

6. References

T. H. Falk and W.-Y. Chan, “Modulation spectral features for ro-
bust far-field speaker identification,” in 2010 IEEE Transactions
on Audio, Speech, and Language Processing, vol. 18, no. 1, 2010,
pp. 90-100.

Q.Jin, T.Schultz, and A.Waibel, “Far-field speaker recognition,” in
IEEE Transactions on Audio, Speech, and Language Processing,
vol. 15, no. 7, 2007, pp. 2023-2032.

J. Barker, E. Vincent, N. Ma, C. Christensen, and P. Green, “The
PASCAL CHIiME speech separation and recognition challenge,”
Computer Speech and Language, vol. 27, no. 3, pp. 621-633, May
2013.

E. Vincent, J. Barker, S. Watanabe, J. Le Roux, F. Nesta, and
M. Matassoni, “The second CHiME speech separation and recog-
nition challenge: Datasets, tasks and baselines,” in 2013 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), Dec 2013, pp. 162-167.

J. Barker, R. Marxer, E. Vincent, and S. Watanabe, “The third
CHIME speech separation and recognition challenge: Analysis
and outcomes,” Computer Speech and Language, vol. 46, pp.
605-626, Nov 2017.

E. Vincent, S. Watanabe, A. A. Nugraha, J. Barker, and
R. Marxer, “An analysis of environment, microphone and data
simulation mismatches in robust speech recognition,” Computer
Speech  Language, vol. 46, pp. 535 — 557, 2017. [Online].
Available: http://www.sciencedirect.com/science/article/pii/
S0885230816301231

V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: An ASR corpus based on public domain audio books,”
in 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), April 2015, pp. 5206-5210.

publicdomainmovies.net. (2018) Public domain movies. [Online].
Available: http://publicdomainmovies.net/

P. S. E. LLC. (2018) Public domain movies and TV shows.
[Online]. Available: http://publicdomainmovies.org/

D. Snyder, G. Chen, and D. Povey, “MUSAN: A music, speech,
and noise corpus,” CoRR, vol. abs/1510.08484, 2015. [Online].
Available: http://arxiv.org/abs/1510.08484

D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz,
J. Silovsky, G. Stemmer, and K. Vesely, “The Kaldi speech recog-
nition toolkit,” in IEEE 2011 Workshop on Automatic Speech
Recognition and Understanding.  IEEE Signal Processing So-
ciety, Dec. 2011, iEEE Catalog No.: CFP11SRW-USB.

M. K. Nandwana, J. van Hout, M. McLaren, A. Stauffer,
C.Richey, A. Lawson, and M. Graciarena, “Robust speaker recog-
nition from distant speech under real reverberant environments us-
ing speaker embeddings,” Interspeech, vol. Accepted, 2018.

N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet,
“Front-end factor analysis for speaker verification,” IEEE Trans-
actions on Audio, Speech, and Language Processing, vol. 19,
no. 4, pp. 788-798, May 2011.

D. Garcia-Romero and C. Espy-Wilson, “Analysis of i-vector
length normalization in speaker recognition systems.” in Proc. In-
terspeech, 01 2011, pp. 249-252.

S. J. D. Prince and J. H. Elder, “Probabilistic linear discriminant
analysis for inferences about identity,” in 2007 IEEE 11th Inter-
national Conference on Computer Vision, Oct 2007, pp. 1-8.

L. Ferrer, H. Bratt, L. Burget, H. Cernockyy, O. Glembeky,
M. Graciarena, A. Lawson, Y. Lei, P. Matejkay, O. Plchoty, and
N. Scheffer, “Promoting robustness for speaker modeling in the
community: the PRISM evaluation set,” in Proceedings of NIST
2011 workshop, 2011.

1570



