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Abstract
Acoustic-to-word (A2W) prediction model based on Connec-
tionist Temporal Classification (CTC) criterion has gained in-
creasing interest in recent studies. Although previous stud-
ies have shown that A2W system could achieve competitive
Word Error Rate (WER), there is still performance gap com-
pared with the conventional speech recognition system when
the amount of training data is not exceptionally large. In this
study, we empirically investigate advanced model initializations
and training strategies to achieve competitive speech recogni-
tion performance on 300 hour subset of the Switchboard task
(SWB-300Hr). We first investigate the use of hierarchical CTC
pretraining for improved model initialization. We also explore
curriculum training strategy to gradually increase the target vo-
cabulary size from 10k to 20k. Finally, joint CTC and Cross
Entropy (CE) training techniques are studied to further im-
prove the performance of A2W system. The combination of
hierarchical-CTC model initialization, curriculum training and
joint CTC-CE training translates to a relative of 12.1% reduc-
tion in WER. Our final A2W system evaluated on Hub5-2000
test sets achieves a WER of 11.4/20.8 for Switchboard and Call-
Home parts without using language model and complex de-
coder.
Index Terms: speech recognition, end-to-end, acoustic-to-
word, all-neural

1. Introduction
The goal of automatic speech recognition system is to recog-
nize spoken words. However, speech recognition systems [1–3]
have been relying on modeling sub-word units except some iso-
lated word speech recognition tasks. This is mostly due to the
difficulty of directly using word as acoustic modeling unit. The
challenge of using word as acoustic modeling unit come from
(1) the sparsity of training data, and (2) capturing long term
dependencies between acoustic frames. With the recent suc-
cess in applying recurrent neural network (RNN) and its vari-
ants in speech recognition, modeling long term dependencies
of acoustic frames for word prediction becomes feasible. In re-
cent study [4,5], the authors have successfully proposed a direct
acoustic-to-word (A2W) system that achieves state-of-the-art
speech recognition performance by leveraging 125,000 hours of
training data collected from Youtube videos with captions. As
the speech recognition system in [5] composed of single neu-
ral network trained in end-to-end fashion without any language
model and complex decoder.

The concept of end-to-end all-neural speech recognition
has gained much interest in recent study [5–7]. One attrac-
tive characteristics of end-to-end all-neural speech recognition
system is that it could jointly optimize every components of
speech recognition with neural network under a unified frame-
work. Therefore, an important task of end-to-end speech recog-
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nition systems is to learn the output dependencies without us-
ing separately trained language model. For example, in RNN-
Transducer [7–9] and attention based seq2seq model [10–13],
the output dependencies are modeled with a separate neural net-
work1 but trained jointly with a single objective function. A2W
system based on CTC [8] is also an example of an end-to-end
all-neural speech recognition system where a single neural net-
work models both acoustic and output dependencies.

One of the major difficulties of training A2W system is data
sparsity problem. While the study in [5] has alleviated data
sparsity problem by using exceptionally large training data up to
125,000 hours, collecting such amount of training data is itself a
challenging task in practice. The data sparsity problem of A2W
system arises as certain words in the vocabulary does not occur
very frequently in the training data. However, as many words
share the same structural representation, the data sparsity prob-
lem can be alternatively alleviated by exploiting these shared
representations. The study in [14,15] is an example where A2W
system achieves competitive speech recognition performance
with a moderately sized training data by initializing the A2W
system with CTC-phone model. It was observed in [15] that the
model initialization and regularizations are very important for
A2W system when the training data is not exceptionally large.
Another approach that could address the data sparsity problem
is to have a separate sub-word unit based model (or output layer)
to assist predicting these rarely occurred words using detected
〈unk〉 boundary [16] or decompose these rare words into sub
word units in A2W system [15, 17].

In this study, we aim to further enhance the performance of
A2W system on moderately sized training data with improved
model initialization, training strategy and network architecture.
Specifically, we found three techniques that consistently im-
prove existing A2W system on 300 hours Switchboard English
speech recognition task. These include:

• Hierarchical-CTC [7,18] pretraining with phonemes and
grapheme as target at different network depth.

• Curriculum training [19] to gradually increase the vocab-
ulary size from 10k to 20k.

• A joint CTC-CE training network.
The rest of the papers is organized as below. In Sec.2, we
present the baseline A2W system. In Sec. 3 we describe
the model initialization and training strategies explored in this
study. In Sec.4 we describe the experimental setup and the re-
sults. Finally, we conclude the paper in Sec. 5

2. Baseline Acoustic-to-Word Model
2.1. CTC loss

The CTC loss [20] is used as the objective function for baseline
A2W system as in [5, 15]. The CTC loss is defined as negative

1It is called prediction network in RNN-Transducer, and decoder
network in attention based seq2seq model.
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log probability of correct label sequence given input observation
for all the data in the training set.

LCTC = −
∑

(x,l)

lnP (l|x) (1)

For calculating CTC loss, the conditional probability of correct
label is computed as the accumulated sum of probabilities of all
alignment paths belong to given target label sequence.

P (l|x) =
∑

π∈l
P (π|x). (2)

In order to compute the conditional probability more efficiently,
the forward-backward algorithm is employed. Another main
characteristic of CTC is the use of blank label to allow network
to avoid making non-confidential decisions in some frames.

2.2. Network

We use CLDNN [21] as our baseline neural network model ar-
chitecture. Our input feature is 40-dimensional log filterbank
features. A 9x9 frequency-time filter is used for the first con-
volutional layer, and a 4x4 convolutional filter is used for the
second and third convolutional layers. We uses 16 feature maps
for each convolutional layers. We reduce the size of final CNN
output to 256 with a linear projection layer. We use stride of 3
along the time dimension in the first convolution layer, and 1 for
the rest. The output from CNN is then passed to a 5-layer bidi-
rectonal LSTM (BLSTM) where each LSTM has 512 cells. The
output of BLSTM is finally passed to a linear projection layer
with 320 units followed by the final output layer. As the final
output layer of A2W system can be very large depending on the
size of vocabulary, a linear projection layer could effectively re-
duce the training time of A2W system. At the same time, it also
improves the performance of A2W system [14, 15].

2.3. Target Vocabulary

In A2W system, the whole words are used as acoustic modeling
units. When training data is large enough to ensure sufficient
samples for every words in the vocabulary, the entire vocabulary
from the training data can be used as target sets for training
A2W system [5]. However, when the training data is not large
enough, the words that occur less frequently in training data
can be mapped to a special label of 〈unk〉 and these words will
not be recognized in A2W system [4, 14, 15]. Specifically, we
construct the vocabulary by selecting words appeared more than
5 times into the vocabulary while treating other words as 〈unk〉.
This results in a vocabulary with size of 10,000. This setup is
very similar to [14, 15]. Note that all the partial words in the
training data is mapped to a special label of [vocalized noise]
and ignored during scoring.

2.4. Model Initialization

We initialized our baseline A2W system from pretrained CTC-
phone model as in [14,15]. We also found that it is important to
have good initialization for the success of A2W system.

2.5. Training Process

We use Adam optimizer [22] for training our model. It is found
that use Adam with fixed start learning rate results in poor con-
vergence. The start learning rate of Adam is adjusted every
epoch based on the error observed from the development data.
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Figure 1: Illustration of Hierarchical CTC initialization for
A2W model. The 3 CNN and 5 BLSTM layers are pretrained
with phone based CTC. Additional two layers of BLSTM and a
linear projection layer are stacked on top and pretrained with
grapheme based CTC.

Specifically, we start with a learning rate of 5 × 10−3, and de-
crease it by a factor of 4 if the average edit distance in the de-
velopment data doesn’t decrease. The training ends when the
learning rate is less than 1× 10−6. We sorted our training data
in an ascending order according to sequence lengths. A batch
size of 64 is used and L2 regularization of 0.001 is used. We
use a momentum of 0.9.

The baseline A2W system is trained with Switchboard 300
hour training data and evaluated on Switchboard and CallHome
part of Hub5-2000. We compare our baseline A2W system per-
formance with the number reported in [15] in Table 1. Both
systems use the same dataset for training and testing, but the
models used are not exactly the same. And it can be observed
that the WERs in two systems are similar with our A2W base-
line performs slightly worse in CallHome part ot test set.

Table 1: A2W baseline WER on Switchboard and CallHome
with 300-hour training data.

SWB CH

A2W [15] 14.6 23.6
A2W (ours) 14.8 25.8

3. Improvements
In this section, we introduce the techniques that improve A2W
system in our study.

3.1. Hierarchical CTC pretraining

Model initialization with CTC-phone has shown to be very im-
portant in A2W system when the training data is moderately
sized [15]. By pretraining the A2W model with CTC-phone,
the underlying shared representation of words can be learned in
advance. With the same motivation, we investigate Hierarchical
CTC pretraining for improved model initialization.

The use of Hierarchical CTC [7,18] based model initializa-
tion has been explored in [14] for A2W system. However, it was
reported that the Hierarchical CTC based model initialization
could not outperform simple CTC-phone initialization [14]. In
our study, we use different implementation of Hierarchical CTC
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pretraining and found that it brings consistent improvement over
the baseline CTC-phone pretraining.

In our implementation of Hierarchical CTC, we first ini-
tialize bottom 3 CNN and 5 BLSTM layers with phone based
CTC. Then 2 additional BLSTM layers are stacked on top of 5
BLSTM layers. Instead of randomly initialize top two BLSTM
directly for A2W system as in [14], we further pretrain the top
two BLSTM layers with CTC criterion with grapheme as tar-
gets. The motivation of using grapheme as target is to exploit
additional structural representations coming from grapheme
learning. Figure 1 illustrates hierarchical CTC based A2W
model initialization.

3.2. Curriculum Training

When training A2W system, rare words in the training data is
much difficult to train than the ones with more occurrences. If
we attempt to model all the words in training data simultane-
ously, it will result in suboptimal performance when the training
data is not large enough. The curriculum training [19] has been
successfully applied for many difficult optimization problems
where a challenging task is addressed by starting from learning
easier subtasks.

In this study, we also explore the use of curriculum training
to gradually increasing target vocabulary size for A2W system.
Specifically, the training is performed in an order of increas-
ing vocabulary size from 10k to 20k. We start from training
A2W model for predicting only the most frequently occurred
10k words. During the first curriculum training stage with 10k
vocabulary, all utterances with words not belonging to the the
selected 10k vocabulary are excluded from training. Therefore,
in this first stage of curriculum training, 〈unk〉 label does not
exist. After the training of A2W model with 10k vocabulary
converges, the model is then used as starting point to continu-
ously learning to predict vocabulary of larger size (20k) with the
rest of words mapped to 〈unk〉 label. The curriculum training
used here first ensures a good convergence point for predicting
more frequently occurred words, and the learned representation
from the earlier stage could also help predicting the words with
less examples.

3.3. Joint CTC-CE Training

Cross Entropy (CE) and CTC is two alternative loss functions
for training speech recognition systems. The CE loss is used in
conventional speech recognition systems where a fixed align-
ment between acoustic frames and labels is needed. On the
other hand, CTC loss is used in end-to-end speech recognition
systems where the loss is computed from all alignment paths
belong to given target label sequence.

As both CTC and CE based model are capable of word pre-
diction, we propose to combine CTC and CE for A2W system.
The combination of CTC and CE training has been investigated
in previous studies. However, in these studies, CE model is
used as a way to stabilize the training of CTC system by means
of pretraining [4, 23].

In this study, we investigate joint training of CTC and CE
for A2W prediction. We investigate two different architectures
for joint CTC and CE training. The first approach that we inves-
tigate is to combine CTC and CE is through regular multitask
learning where the CTC loss in A2W system is replaced with
the sum of CTC and CE loss as in Figure2-b. We also investi-
gate a different joint CTC-CE network where the final projec-
tion layer in baseline A2W model is extended with two linear
transformation with the CE loss updating only one of the two

linear layers as in Figure2-c. A potential benefits of having two
linear transform layers is to preserve one linear layer dedicated
to CTC objective. Specifically, we design our system as in Fig-
ure 2-c. The bottom CNN and BLSTM layers are the same as in
baseline A2W system. To include the CE loss into CTC based
A2W system, we project the output of top linear projection layer
with two separate linear projection layers. The output from the
second linear layer highlighted with green color in Figure 2-c is
directly connected to the final output layer of CE model to re-
ceive error signals from CE loss. At the same time, the hidden
activations of both projection layers are concatenated to obtain
the final output distribution for computing the CTC loss.
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Figure 2: Representation of (a) Vanila CTC, (b) multi-task
learning , and (c) joint CTC-CE training network.The symbol
Ø is function represents CNN and BLSTM layers before the lin-
ear projection layer.

The loss function of multitask learning and joint CTC-CE
network training can be both represented as sum of CTC loss
and CE loss as in Eq. 3. λ is hyperparameter controls the
strength of CE loss.

Ltotal = LCTC + λLCE (3)

4. Experiments & Results
Our experiments are evaluated on Hub5-2000 test sets using 300
hour Switchboard English speech corpus as training data. Our
final model is trained with augmented training data with differ-
ent speaking rates and volumes as in [3].

4.1. Hierarchical CTC pretraining

We compare the performance of hierarchical CTC pretraining
with CTC phone initialization in Table 2. We observe consis-
tent improvements with Hierarchical CTC based model initial-
ization. We could also see that simply increasing depth of layers
from 5 to 7 result in only marginal gains in performance.

Table 2: Comparison of CTC-phone initialization and hierar-
chical CTC initialization on Hub5-2000 test set.

Initialization Method SWB CH

CTC-Phone (5L-BLSTM) 14.8 25.8
CTC-Phone (7L-BLSTM) 14.7 25.9
Hierarchical CTC (7L-BLSTM) 14.2 24.9

4.2. Curriculum Training

We compare the performance of training A2W system with 20k
vocabulary with regular training strategy and curriculum train-
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ing in Table 3. It is observed that simply increasing target
vocabulary size from 10k to 20k achieves little improvement.
But, with curriculum training strategy, using 20k vocabulary
as output target indicates a consistent improvement in WER.
We found that using A2W model with 20k vocabulary trained
with curriculum training could result in 1% absolute reduction
in deletion errors. At the same time we notice a slight increase
in substitution and insertion errors when using 20k vocabulary.

Table 3: Comparison of regular training and curriculum train-
ing on Switchboard part of Hub5-2000 test set.

Regular Curriculum

A2W (10K vocab) 14.8 -
A2W (20K vocab) 14.7 14.1

4.3. Joint CTC-CE Training

We compare the performance of proposed joint CTC-CE net-
work with previous multi-task learning in Table 4. We observe
that the simple multi-task learning with CTC and CE loss could
not improve the performance of A2W system. On the other
hand, the joint CTC-CE network proposed in this study indi-
cates a consistent improvement over baseline A2W system on
both Swtichboard and CallHome evaluations. As the joint CTC-
CE has two different linear transformation resulting in more pa-
rameters than baseline A2W system, we compare it with A2W
system with the same network architecture but without CE loss
(λ = 0). And the result indicates that the improvement injoint
CTC-CE training is not due to increased parameter size.

4.4. Combination

In previous subsections, we investigated hierarchical CTC pre-
training, curriculum training, and joint CTC-CE training sep-
arately. In this subsection, we combine three techniques
described in previous subsections. We start from baseline
A2W system which has a WER of 14.8/25.8% on Switch-
board/CallHome part of Hub5-2000 test set. Then we add Hier-
archical CTC pretraining for model initialization to reduce the
WER to 14.1/24.5%. By increasing the vocabulary size from
10k to 20k with curriculum training, the WER is reduced to
13.5/24.2%. When we combine the curriculum training with
join CTC-CE training the WER is further reduced to 13.0/23.4.

Table 4: Evaluation of joint CTC-CE training on Switchboard
and CallHome with 300-hour training data.

SWB CH

A2W 14.8 25.8
A2W (MTL) 15.1 26.3
A2W (Joint CTC-CE, λ = 0) 14.9 25.4
A2W (Joint CTC-CE, λ = 0.3) 14.3 25.0

4.5. Final Model with Data Augmentation

In our final model, we use similar training recipe described
in previous sections, but with 3-fold data augmentation using
speed-perturbation technique described in [3]. The augmented
training data is used in each training stage of current A2W sys-
tem. We also changed our convolutional strides from 3 to 2

Table 5: Combination of hierarchical CTC model initialization,
curriculum training and joint CTC-CE training evaluated on
Switchboard and CallHome part of Hub5-2000 test set.

SWB CH

A2W-10K (baseline) 14.8 25.8
+Hierarchical CTC Pretraining 14.1 24.5
+Curriculum Training (10k→20k) 13.4 24.2
+Joint CTC-CE 13.0 23.4
Final model (speed perturbation) 11.4 20.8

along time axis as we found that using stride 2 gives consis-
tently better performance in our later studies. We also added
Gaussian weight noise with a standard deviation of 0.0625 [24]
and a drop connection rate of 0.1 [25] when experimented using
augmented training data. We found that adding Gaussian weight
noise and drop connection is important in order to achieve
good performance when using speed-perturbed data. Using this
model we obtain our final WER of 11.4/20.8 without language
model and complex decoder.

Finally, we compare the performance of our final model
with the WER reported by others using conventional speech
recognition system as well end-to-end speech recognition sys-
tems in Table 6. Our final model shows competitive perfor-
mance compared to previous A2W system on the same task as
well as other end-to-end speech recognition systems. The gap
between A2W system and conventional speech recognition sys-
tem with 300 hour training data has also been measurably re-
duced in this work.

Table 6: Comparing our final model to other systems built on
Switchboard 300hrs.

Model Output
Unit

LM/
Decoder SWB CH

DNN+sMBR [26] CD state Y 12.6 24.1
BLSTM [27] CD state Y 10.8 19.5
BLSTM+LFMMI [3] CD state Y 9.6 19.3

Attention Seq2seq [28] char Y 25.8 36.0
CTC+CharLM [29] char Y 21.4 40.2
Iterated CTC [6] char Y 15.1 26.3
CTC [30] char Y 14.5 -

A2W [15] word N 14.6 23.6
A2W (current) word N 11.4 20.8

5. Conclusions
In this study, we advanced A2W system by using Hierarchical
CTC based model initialization, curriculum training, as well as
joint CTC-CE training. The A2W system proposed in this work
could achieve 11.4/20.8% WER without using language model
and complex decoder on Switchboard and Callhome part of
Hub5-2000 evaluation set with SWB-300Hr training data. Fu-
ture study includes the evaluation of current A2W system with
larger training set by including 2000 hours of Fisher dataset.
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