
Improving DNNs Trained With Non-Native Transcriptions Using Knowledge
Distillation and Target Interpolation

Amit Das, Mark Hasegawa-Johnson

University of Illinois, USA
amitdas@illinois.edu, jhasegaw@illinois.edu

Abstract

Often, it is quite hard to find native transcribers in under-
resourced languages. However, Turkers (crowd workers) avail-
able in online marketplaces can serve as valuable alternative re-
sources by providing transcriptions in the target language. Since
the Turkers may neither speak nor have any familiarity with the
target language, their transcriptions are non-native by nature
and are usually filled with incorrect labels. After some post-
processing, these transcriptions can be converted to Probabilis-
tic Transcriptions (PT). Conventional Deep Neural Networks
(DNNs) trained using PTs do not necessarily improve error rates
over Gaussian Mixture Models (GMMs) due to the presence
of label noise. Previously reported results have demonstrated
some success by adopting Multi-Task Learning (MTL) training
for PTs. In this study, we report further improvements using
Knowledge Distillation (KD) and Target Interpolation (TI)to
alleviate transcription errors in PTs. In the KD method, knowl-
edge is transfered from a well-trained multilingual DNN to the
target language DNN trained using PTs. In the TI method, the
confidences of the labels provided by PTs are modified using
the confidences of the target language DNN. Results show an
average absolute improvement in phone error rates (PER) by
about 1.9% across Swahili, Amharic, Dinka, and Mandarin us-
ing each proposed method.
Index Terms: knowledge distillation, target interpolation, deep
neural networks, under-resourced, cross-lingual speech recog-
nition

1. Introduction
A well-resourced language (WRL) is a language (e.g. English)
with an abundance of resources to support the development of
speech technology. Those resources are usually defined in terms
of 100+ hours of speech data, corresponding transcriptions, pro-
nunciation dictionaries, and language models. On the contrary,
an under-resourced language (URL) lacks one or more of these
resources. The most expensive and time consuming resource is
the acquisition of transcriptions due to the difficulty in finding
native transcribers.

To circumvent this difficulty, transcriptions can be collected
from online non-native crowd workers, or Turkers, who nei-
ther speak the target language nor have any familiarity withit.
Briefly, a single utterance in some target languageL is tran-
scribed by multiple Turkers who do not speakL. This generates
a collection of non-native transcriptions, one from each Turker.
This collection, after merging and some post-processing, can be
represented as a confusion network. We refer to such a network
as aProbabilistic Transcription (PT) [1]. On the contrary, the
correct transcription generated by a native speaker can be repre-
sented as a single sequence of labels. We refer to this sequence
as aDeterministic Transcription (DT). DTs are simply conven-
tional transcriptions that we frequently encounter in large vo-

[k]/1.0 [æ]/1.0 [t]/1.0

Figure 1:A deterministic transcription (DT) for the word cat.

[k]/0.5

[g]/0.4

∅/0.1

[a]/0.45

[5]/0.35

[æ]/0.10

[E]/0.10

[p]/0.3

[a]/0.2

∅/0.5

[p]/0.3

[k]/0.3

[t]/0.2

[b]/0.2

Figure 2:A probabilistic transcription (PT) for the word cat.

cabulary speech corpora like TIMIT, Wall Street Journal etc.
As an example, consider the DT for the word “cat” in Fig. 1.

Each arc represents a label and a probability value which is al-
ways one. On the other hand, a PT is the network in Fig. 2.
The arc weight specifies the conditional probability that the
phoneme was spoken given the audio. The arc weights are de-
termined by agreements among Turker labels. Because Turkers
cannot correctly distinguish between all phone pairs in theutter-
ance language, these weights are usually less than 1.0. In terms
of training a DNN, running the force alignment using DTs re-
sults in 1-hot alignments with each frame associated with only
one label. However, force alignment using PTs results in soft
alignments since a frame could be associated with multiple la-
bels with non-zero probabilities.

Conventional training of DNNs using PTs do not necessar-
ily improve error rates over GMMs [2,3]. This is due to higher
sensitivity of discriminative training to label noise compared
to maximum likelihood training [4]. To alleviate this problem,
MTL style training [5], also known asmultilingual training or
block softmax [6–8], was introduced as the first reliable base-
line to train DNNs using PTs [2]. It uses a mixture of noisy PTs
from the target URL and clean DTs from multiple other WRLs
[2,9,10] in separate sub-tasks. The strong supervision provided
by the DTs has the effect of compensating errors in PTs.

In this study, we focus on Knowledge Distillation (KD) and
Target Interpolation (TI) to further alleviate the effect of noisy
labels in PTs. In [11], the authors describe KD as the process
of transfering knowledge from a large cumbersome model (or
an ensemble of models) to a small distilled model. The cum-
bersome and distilled model are sometimes referred to as the
Teacher and Student models. Hence, KD is also known as
Teacher-Student (TS) learning. IfD is a data set on which
the student model is to be trained, then the DNN training pro-
cedure involves the following steps. In the first step, feedfor-
wardD through a prior well-trained teacher DNN to generate
the posterior outputs (teacher labels). The teacher labelsform
a soft target distribution for each training example inD. In the
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second step, train the student DNN by minimizing the cross-
entropy (CE) loss between the teacher labels and the posterior
outputs of the student DNN. Thus, the student DNN attempts
to mimic the behavior of the teacher DNN by trying to match
its own outputs with those of the teacher labels. To improve the
generalizability of the student DNN, the teacher labels could
be generated by using a high temperatureT in the softmax of
the teacher DNN. The same temperatureT is then used at the
softmax of the student DNN during CE training. It has been
shown that whenT → ∞ (high temperature limit), CE training
is equivalent to minimizing the mean square error (MSE) of the
logits (pre-softmax activations) between the teacher and student
DNNs [11].

Several studies [12–22] in the past have used KD to im-
prove DNNs. In [12], a small DNN was trained using teacher
labels generated by feedforwarding a large number of untran-
scribed data through a large DNN. In other studies, the authors
transfer the knowledge from a large RNN to a small DNN [13]
or from a large DNN to a small highway DNN [14]. In [15,16],
KD was used to improve the robustness of DNNs to noisy data.
The one that is most relevant to our work is [17] where KD was
used for adaptation to under-resourced Japanese dialects.

In the TI approach, we interpolate the confidences of the
labels provided by PTs with the confidences of the target lan-
guage DNN. The DNN is then trained using the new interpo-
lated confidence values. Intuitively, we emphasize the beliefs
of the learner rather than solely relying on noisy “ground truth”
labels.

The remainder of the paper is organized as follows. In Sec-
tion 2 and Section 3, we describe the KD and TI frameworks
respectively. In Section 4, we discuss our experiments and re-
sults. In Section 5, we present our conclusions.

2. Knowledge Distillation (KD)
In this section, we provide a brief outline of the KD framework.
Consider an input feature vectorx. A generalized softmax is a
softmax function operating on logitszk(x) and a temperature
T ∈ R+. Here,k ∈ {1, · · · ,K}, whereK is the total number
of classes. We denotezk(x) as simplyzk and assume the de-
pendence onx is implicit. The outputyk(T ) of the generalized
softmax is given by,

yk(T ) =
exp (zk/T )∑K
j=1 exp (zj/T )

. (1)

There are two extreme cases in Eq. (1). Lety(T ) =
[y1(T ) · · · yK(T )]′. For very hot (T ≫ 1) and cold tem-
peratures (T ≪ 1), y(T ) approaches the uniform and 1-hot
distribution respectively. Thus,limT→∞ yk(T ) = 1

K
and

limT→0 yk(T ) = 1[k=argmax yj
1≤j≤K

]. The 1-hot distribution is the

result of assigning one to the highest element iny(T ) while as-
signing zero to the remaining elements. In the KD framework,
the student model is trained to minimize the loss,

EKD = ρC(p,y(1)) + (1− ρ)C(q(T ),y(T )), (2)

where,
C(p,y(1)) = −

K∑

k=1

pk log yk(1), (3)

C(q(T ),y(T )) = −
K∑

k=1

qk(T ) log yk(T ). (4)

The termpk in Eq. (3) is the posterior probability of labelk
given the feature vectorx. Since this is generated from the

noisy PTs, it need not be a binary value 0 or 1 as described in
Section 1. Thus,p need not be a 1-hot vector. Likewise,qk(T )
in Eq. (4) is the posterior probability of labelk generated by
feedforwardingx through a teacher DNN equipped with a gen-
eralized softmax with temperatureT . In other words, it is a
teacher label. In the under-resourced scenario, the teacher DNN
is a reasonably well-trained multilingual DNN trained withDTs
from WRLs. The termyk(T ) in Eq. (4) is the posterior proba-
bility of label k generated by feedforwardingx through a stu-
dent DNN equipped with a generalized softmax with tempera-
tureT . The student DNN is the target language DNN trained
with PTs from the URL. The termyk(1) in Eq. (3) is a special
case ofyk(T ) with T = 1. Finally, ρ is a weight that balances
the losses in Eq. (3) and Eq. (4).

During backpropagation, the gradient of Eq. (4) with re-
spect to the student logitzk, i.e., ∂C(q,y)

∂zk
, is artificially scaled

by T 2. This is because the gradient itself is a function of1/T 2.
Thus, the artificial scaling removes the dependence onT . As a
result, the individual backpropagation errors from Eq. (3)and
Eq. (4) have similar ranges and can be added meaningfully.

Knowledge distillation specializes to several interesting
cases. Whenρ = 1, Eq. (2) is the same as the standard CE
loss. When0 < ρ < 1 andT = 1, Eq. (2) is equivalent to reg-
ularizing the CE loss with Kullback-Leibler Divergence (KLD)
[23]. Whenρ = 0 (indicating the absence of ground truth la-
belsp), Eq. (2) can be used for unsupervised adaptation. For
example, in the case ofρ = 0, T = 1 and when the student
DNN is not initialized from a teacher DNN, Eq. (2) was used
for unsupervised adaptation using the teacher labels obtained
from a large teacher DNN [12]. Whenρ = 0, T = 1 and
the student DNN is initialized from the teacher DNN, training
using Eq. (2) is equivalent to self-training. Here, the teacher la-
belsq(1) are identical to the outputsy(1) of the student DNN
before the first weight update of the student DNN. However, af-
ter that, the teacher labels are kept constant whereas the student
outputs are allowed to differ with every weight update.

3. Target Interpolation (TI)
In this section, we provide a brief outline of the TI framework.
We will omit the dependence onT since in this sectionT = 1
always. First, we defineC(f(y),y) as,

C(f(y),y) = −
K∑

k=1

f(yk) log yk, (5)

wheref(.) is an element-wise function ofy satisfyingf(yk) ∈
[0, 1] and

∑
k f(yk) = 1. The DNN is trained to minimize the

loss,

E = ρC(p,y) + (1− ρ)C(f(y),y),

= C(ρp+ (1− ρ)f(y),y), (6)

whereC(p,y) is as defined in Eq. (3). The second step in
Eq. (6) is due to the linearity ofC(., .) in the first argument.
We consider two among several choices off(.). They are,

f(yk) =




yk, (soft)
1[k=argmax yj

1≤j≤K

]. (hard) (7)

Plugging in Eq. (7) and Eq. (5) into Eq. (6), we get,
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Esoft = −
K∑

k=1

(ρpk + (1− ρ)yk) log yk, (8)

Ehard = −
K∑

k=1

(ρpk + (1− ρ)1[k=argmax yj
1≤j≤K

]) log yk. (9)

Corresponding error gradients for the losses in Eq. (8) and
Eq.(9) are,

∂Esoft

∂zk
= ρ(yk − pk) + (1− ρ)yk(I(yk)−H(y)), (10)

∂Ehard

∂zk
= ρ(yk − pk) + (1− ρ)(yk − 1[k=argmax yj

1≤j≤K

]), (11)

where,
I(yk) = − log yk,

H(y) = −
K∑

k=1

yk log yk.

The motivation behind the choices in Eq. (7) is that we use the
label confidences of the DNNf(yk) to modify the noisy PT la-
belspk. Thus, the new ground truth label is an interpolation be-
tweenpk andf(yk). For the soft case, we use the entire output
distribution of the DNN. Then the loss in Eq. (8) becomes the
standard CE loss with entropy regularization. A DNN trained
using this loss function will find a balance between minimiz-
ing the CE lossC(p, y) while also lowering the entropy of its
outputsC(y,y). Since PTs are prone to high entropies, lower-
ing the entropies of the DNN outputs is desirable. For the hard
case, we simply binarize the DNN outputs to a 1-hot distribu-
tion. Compared to the soft case, the hard case ignores the cross-
correlations between different classes. In both cases, however,
the new interpolated labels still form a valid probability distri-
bution since they sum to one when summed over theK classes.

4. Experiments and Results
4.1. Data
Multilingual audio files were obtained from the Special Broad-
casting Service (SBS) network which publishes multilingual ra-
dio podcasts in Australia. The corpus is summarized in Ta-
ble 1. Natively transcribed DTs in Arabic (arb), Cantonese
(yue), and Hungarian (hun) were always treated as data from
source WRLs. Non-natively transcibed PTs were used as data
from the target URL. We experimented with four target URLs
- Swahili (swh), Amharic (amh), Dinka (din), and Mandarin
(cmn) - in a round-robin fashion. For example, ifswh is the
target language, then the training set consists of PTs inswh and
DTs in the remaining six languages (amh, din, cmn, arb, yue,
hun). Thus, the training set excludes DTs inswh. In this sense,
our experiments fall under the domain of zero-resource speech
recognition.

More than 2500 Turkers participated in transcribing, with
roughly 30% of them claiming to know only English. The
remaining Turkers claimed knowing other languages such as
Spanish, French, German, Japanese, and Mandarin. It may be
noted that PTs for Mandarin audio were never collected from
Mandarin speaking Turkers. The utterances were limited to
a length of 5 seconds. This is because the Turkers did not
understand the utterance language and it was easier for them
to annotate short utterances than long. Since English was the
most common language among the Turkers, they were asked
to annotate the sounds using English letters. The sequence of
letters was not meant to be meaningful English words or sen-
tences since this would be detrimental to the final performance.

Table 1:SBS Multilingual Corpus.

Language Utterances Phones
Train Test

Swahili (swh) 462 123 48
Amharic (amh) 516 127 37
Dinka (din) 248 53 27
Mandarin (cmn) 467 113 52
Arabic (arb) 468 112 46
Cantonese (yue) 544 148 32
Hungarian (hun) 459 117 65
All - - 82

The important criterion was that the annotated letters represent
sounds they heard from the utterances as if they were listening
to a sequence of nonsense syllables in some exotic language.
Since no Turker is likely to generate the perfect transcription,
each utterance was transcribed by ten Turkers creating ten dif-
ferent transcriptions per utterance. These transcriptions were
converted to phones and merged into a PT [1]. Approximately
$500 was paid per ten Turkers for transcribing an hour of au-
dio. As for DTs, the same set of utterances were transcribed
by native speakers in the target language. However, the DTs
in the target language were used only for evaluating the ASR
performance on the test set.

The training set consists of a) about 40 minutes of PTs in
the target URL and, b) about 40 minutes of DTs in multiple
WRLs. The development and test sets were worth 10 minutes
each. The test utterances were randomly selected to avoid any
speaker or gender bias. Going back to our previous example, if
swh is the target language, then the training set consists of 40
minutes of PTs inswh and 40 minutes of DTs each inamh, din,
cmn, arb, yue, hun (total40× 6 = 240).

All experiments were conducted using the Kaldi toolkit
[24]. Kaldi source code in C++ and toy examples of the pro-
posed KD and TI frameworks are available in our github repos-
itory.1

4.2. Experiments

In this section, we describe the features, baseline, and thepro-
posed experiments. Thirteen Mel Frequency Cepstral Coeffi-
cients (MFCCs), spliced with +/- 3 neighboring frames, were
extracted from speech utterances. These were then transformed
using a Linear Discriminant Analysis (LDA) transform fol-
lowed by Feature-Space Maximum Likelihood Linear Regres-
sion (fMLLR) transform resulting in 40-dimensional fMLLR
features. These features were kept low dimensional to avoidthe
curse-of-dimensionality problem which is more likely to occur
in under-resourced scenarios. These features were then mean
normalized using Cepstral Mean Normalization (CMN) before
using them for DNN training.

As for the labels in DNN training, the forced aligned
senones obtained from HMM models were treated as the ground
truth labels for DNN training. Since a PT is a confusion net-
work, forced alignment performed on a PT produces a training
alignment lattice as opposed to a conventional trainingalign-
ment sequence from a DT. Running forward-backward recur-
sion on the alignment lattice generates the frame-level posteri-
ors which are soft as opposed to 1-hot. These soft labels were
treated as the ground truth labels during DNN training. Phone
based language models (LMs) were built from text data in the

1git clone -b teacher-student
https://github.com/irrawaddy28/SBS-kaldi-2015
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Table 2:PERs of different MTL systems trained with CE, KLD,
and KD losses. The parameters ρ and T are the weighting and
temperature parameters in Eq. (2).

System Parameters Language
ρ T swh amh din cmn

Baseline (CE) 1 1 44.89 60.79 58.65 53.53
KLD 0.6 1 44.11 59.97 58.19 51.00
KLD 0.4 1 44.21 59.36 58.33 50.29
KLD 0.2 1 44.63 59.55 58.65 50.93
KD 0.6 2 44.12 59.82 58.15 50.93
KD 0.4 2 43.66 59.40 57.97 49.85
KD 0.2 2 44.40 59.08 58.26 49.38

target language mined from Wikipedia. Consequently, a phone
based decoder was used to generate the final ASR hypotheses
which were evaluated using PERs. The following experiments
were performed in our evaluation:

• Baseline [2], [10]: An MTL system was trained consisting
of six shared hidden layers and two separate softmax layers
(one softmax per task). The shared hidden layers of the MTL
system were initialized from a multilingual DNN. Both the
tasks were trained to minimize the CE loss. However, the
targets at the first softmax were PTs from a target URL. The
targets at the second softmax were DTs in the remaining six
WRLs. We do not train with DTs in the target URL.

• KLD Regularization [23]: Instead of minimizing the stan-
dard CE loss, the first task of the MTL system was trained to
minimizeEKD in Eq. (2) for the special case ofT = 1 and
0 < ρ < 1. Specifically, values ofρ ∈ {0.2, 0.4, 0.6, 0.8}
were evaluated.

• Knowledge Distillation: The first task of the MTL system
was trained to minimizeEKD in Eq. (2) with 0 < ρ < 1
andT > 1. Specifically, values ofT ∈ {2, 3} and ρ ∈
{0.2, 0.4, 0.6, 0.8} were evaluated.

• Target Interpolation: The first task of the MTL system was
trained to minimizeEsoft in Eq. (8) orEhard in Eq. (9). Values
of ρ ∈ {0.2, 0.4, 0.6, 0.8} were evaluated.

4.3. Results

The PERs comparing the MTL systems trained with CE, KLD,
and KD losses are outlined in Table 2. The systems are named
eponymously after their loss types. We highlight only the most
interesting cases withρ in the range0.6 − 0.2 andT = 1, 2.
Analyzing each language column in Table 2, it is clear that the
KD systems outperform the baseline CE and KLD systems.

Now, we analyze the effect ofT andρ on PERs. Keeping
ρ fixed and varyingT is equivalent to comparing KLD vs KD
systems. Thus, keepingρ constant, KD systems (T = 2) out-
perform their KLD counterparts (T = 1) most of the times. In-
creasingT makes the class correlations more pronounced. This
indicates that the temperature parameter improves the general-
ization capacity of the DNNs by preventing overfitting to the
noisy PTs. Next, keepingT = 2 fixed and varyingρ is equiv-
alent to limiting our comparison within the variants of KD sys-
tems. Asρ decreases, the PERs tend to decrease first and then
increase. Desirable values ofρ areρ < 0.5. From Eq. (2),
this implies that the peformance improves when the system re-
lies increasingly on the teacher labels rather than the PT labels.
However, this trend reverses for very low values ofρ. For exam-
ple, in the extreme case whenρ = 0 (completely ignoring PT
labels), we noticed exceedingly high PERs above 85%. This

Table 3:PERs of different MTL systems trained with CE and TI
losses. The parameter ρ is the weighting parameter in Eq. (8)
and Eq. (9).

System Parameter Language
ρ swh amh din cmn

Baseline (CE) 1.0 44.89 60.79 58.65 53.53
TI (Hard) 0.6 43.96 60.44 58.69 51.14
TI (Hard) 0.4 44.08 59.98 57.94 49.81
TI (Hard) 0.2 44.24 60.58 59.19 51.20
TI (Soft) 0.6 43.49 60.19 58.62 51.09
TI (Soft) 0.4 43.29 59.65 57.65 50.02
TI (Soft) 0.2 44.16 61.14 59.26 50.79

Table 4: Summary of the best proposed systems. Absolute im-
provements over the baseline system inside parantheses.

Lang Baseline (CE) Best Parameters
PER PER System ρ T

swh 44.89 43.29 (1.60) TI (Soft) 0.4 1
amh 60.79 59.08 (1.71) KD 0.2 2
din 58.65 57.65 (1.00) TI (Soft) 0.4 1
cmn 53.53 49.38 (4.15) KD 0.2 2

proves that a combination of PT and teacher labels are more
useful than solely using either of them.

The PERs comparing the CE and TI systems are outlined
in Table 3. Again, we highlight only the most interesting cases
of ρ (0.6 − 0.2). Clearly, both (Hard and Soft) variants of TI
systems outperform the baseline CE system. Among the TI sys-
tems, TI (Soft) outperforms TI (Hard) for the African languages
(Swahili, Amharic, Dinka) whereas it is the opposite for Man-
darin. Suprisingly, for both TI (Hard) and TI (Soft),ρ = 0.4
is the most desirable value. Quite conveniently, this valueof ρ
does not change across languages explored in this study. Sim-
ilar to the KD system, values ofρ < 0.5 imply that the pe-
formance improves when the system relies increasingly on the
DNN labels rather than the PT labels. This means interpolation
is useful and that the new interpolated targets are effective in
alleviating the noise in PT labels. However, similar to the KD
system, settingρ = 0 results in very high PERs.

Finally, a summary of the best proposed systems for each
language, along with their parameters, is highlighted in Ta-
ble 4. The average improvement is about 1.9% absolute for
each KD and TI. This is quite useful considering that this is a
zero-resource scenario with no access to reliable ground truth
DTs in the target URL.

We conducted additional experiments in an attempt to fur-
ther boost the performance of the best KD systems. Since the
PT distributionp is a soft distribution, we parameterizedp with
a new temperature parameterTPT. After changingp to p(TPT),
we minimze the KD lossEKD in Eq.(2). We noticed an improve-
ment in PER over the best KD systems by about 0.2% absolute
whenTPT = 2. Since the improvement is marginal, we continue
to investigate ways to improvep.

5. Conclusions
In this study, we reported further improvements in DNNs
trained with noisy non-native transcriptions (PTs) while not
having access to native transcriptions (DTs) in the target lan-
guage. We proposed Knowledge Distillation and Target Inter-
polation to alleviate the effect of noise in PTs. We observed
consistent improvements in PERs for all the languages explored
in this study. For each of the proposed methods, we reported an
average absolute improvement of 1.9% over the baseline sys-
tem.
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[7] K. Veselý, M. Karafiat, F. Grezl, M. Janda, and E. Egorova, “The
Language-Independent Bottleneck Features,” inProc. IEEE SLT,
2012, pp. 336–341.

[8] J.-T. Huang, J. Li, D. Yu, L. Deng, and Y. Gong, “Cross Lan-
guage Knowlege Transfer Using Multilingual Deep Neural Net-
work With Shared Hidden Layers,” inProc. ICASSP, 2013.

[9] V. H. Do, N. F. Chean, B. P. Lim, and M. Hasegawa-
Johnson, “Multi-Task Learning Using Mismatched Transcription
for Under-Resourced Speech Recognition,” inInterspeech, 2017,
pp. 2073–2077.

[10] A. Das, M. Hasegawa-Johnson, and K. Veselý, “Deep Autoen-
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