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Abstract

Often, it is quite hard to find native transcribers in under-
resourced languages. However, Turkers (crowd workersl ava
able in online marketplaces can serve as valuable alteenati
sources by providing transcriptions in the target langu&gece

the Turkers may neither speak nor have any familiarity with t
target language, their transcriptions are non-native kdyrea
and are usually filled with incorrect labels. After some post
processing, these transcriptions can be converted to Bitisba

tic Transcriptions (PT). Conventional Deep Neural Netvgork
(DNNSs) trained using PTs do not necessarily improve eritesra
over Gaussian Mixture Models (GMMs) due to the presence
of label noise. Previously reported results have demadestra
some success by adopting Multi-Task Learning (MTL) tragnin
for PTs. In this study, we report further improvements using
Knowledge Distillation (KD) and Target Interpolation (Tiy
alleviate transcription errors in PTs. In the KD method, \kho
edge is transfered from a well-trained multilingual DNN he t
target language DNN trained using PTs. In the Tl method, the
confidences of the labels provided by PTs are modified using
the confidences of the target language DNN. Results show an
average absolute improvement in phone error rates (PER) by
about 1.9% across Swabhili, Amharic, Dinka, and Mandarin us-
ing each proposed method.

Index Terms: knowledge distillation, target interpolation, deep
neural networks, under-resourced, cross-lingual speswbgr
nition

1. Introduction

A well-resourced language (WRL) is a language (e.g. Enplish
with an abundance of resources to support the development of
speech technology. Those resources are usually definedris te

of 100+ hours of speech data, corresponding transcriptpyos
nunciation dictionaries, and language models. On the apntr

an under-resourced language (URL) lacks one or more of these
resources. The most expensive and time consuming resa@urce i
the acquisition of transcriptions due to the difficulty inding
native transcribers.

To circumvent this difficulty, transcriptions can be cotlest
from online non-native crowd workers, or Turkers, who nei-
ther speak the target language nor have any familiarity ikith
Briefly, a single utterance in some target langudgés tran-
scribed by multiple Turkers who do not speBkThis generates
a collection of non-native transcriptions, one from eactk&u
This collection, after merging and some post-processiag be
represented as a confusion network. We refer to such a networ
as aProbabilistic Transcription (PT) [1]. On the contrary, the
correct transcription generated by a native speaker caggdoe-r
sented as a single sequence of labels. We refer to this segjuen
as aDeterministic Transcription (DT). DTs are simply conven-
tional transcriptions that we frequently encounter in éavg-
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Figure 1:A deterministic transcription (DT) for the word cat

[a]/0.45 [p1/0.3
[k]/0.5 [p1/0.3
[g]/0.4 [a]/0.2
0/0.1 0/0.5

Figure 2:A probabilistic transcription (PT) for the word cat

cabulary speech corpora like TIMIT, Wall Street Journal etc

As an example, consider the DT for the word “cat” in Fig. 1.
Each arc represents a label and a probability value which is a
ways one. On the other hand, a PT is the network in Fig. 2.
The arc weight specifies the conditional probability thag th
phoneme was spoken given the audio. The arc weights are de-
termined by agreements among Turker labels. Because Burker
cannot correctly distinguish between all phone pairs inuther-
ance language, these weights are usually less than 1.0nis te
of training a DNN, running the force alignment using DTs re-
sults in 1-hot alignments with each frame associated with on
one label. However, force alignment using PTs results ih sof
alignments since a frame could be associated with multgle |
bels with non-zero probabilities.

Conventional training of DNNs using PTs do not necessar-
ily improve error rates over GMMs [2, 3]. This is due to higher
sensitivity of discriminative training to label noise coanpd
to maximum likelihood training [4]. To alleviate this preh,
MTL style training [5], also known aswltilingual training or
block softmax [6-8], was introduced as the first reliable base-
line to train DNNs using PTs [2]. It uses a mixture of noisy PTs
from the target URL and clean DTs from multiple other WRLs
[2,9,10] in separate sub-tasks. The strong supervisioviged
by the DTs has the effect of compensating errors in PTs.

In this study, we focus on Knowledge Distillation (KD) and
Target Interpolation (TI) to further alleviate the effedtrmisy
labels in PTs. In [11], the authors describe KD as the process
of transfering knowledge from a large cumbersome model (or
an ensemble of models) to a small distilled model. The cum-
bersome and distilled model are sometimes referred to as the
Teacher and Student models. Hence, KD is also known as
Teacher-Student (TS) learning. T is a data set on which
the student model is to be trained, then the DNN training pro-
cedure involves the following steps. In the first step, feedf
ward D through a prior well-trained teacher DNN to generate
the posterior outputs (teacher labels). The teacher |dbeats
a soft target distribution for each training exampleZinIn the
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second step, train the student DNN by minimizing the cross-
entropy (CE) loss between the teacher labels and the pasteri
outputs of the student DNN. Thus, the student DNN attempts
to mimic the behavior of the teacher DNN by trying to match
its own outputs with those of the teacher labels. To imprbee t
generalizability of the student DNN, the teacher labelslcou
be generated by using a high temperatifiren the softmax of
the teacher DNN. The same temperatfirés then used at the
softmax of the student DNN during CE training. It has been
shown that whefI” — oo (high temperature limit), CE training

is equivalent to minimizing the mean square error (MSE) ef th
logits (pre-softmax activations) between the teacher ardest
DNNs [11].

Several studies [12—-22] in the past have used KD to im-
prove DNNs. In [12], a small DNN was trained using teacher
labels generated by feedforwarding a large number of untran
scribed data through a large DNN. In other studies, the asitho
transfer the knowledge from a large RNN to a small DNN [13]
or from a large DNN to a small highway DNN [14]. In [15,16],
KD was used to improve the robustness of DNNs to noisy data.
The one that is most relevant to our work is [17] where KD was
used for adaptation to under-resourced Japanese dialects.

In the Tl approach, we interpolate the confidences of the
labels provided by PTs with the confidences of the target lan-
guage DNN. The DNN is then trained using the new interpo-
lated confidence values. Intuitively, we emphasize theckeli
of the learner rather than solely relying on noisy “groundht
labels.

The remainder of the paper is organized as follows. In Sec-
tion 2 and Section 3, we describe the KD and TI frameworks
respectively. In Section 4, we discuss our experiments end r
sults. In Section 5, we present our conclusions.

2. Knowledge Distillation (K D)

In this section, we provide a brief outline of the KD framekior

Consider an input feature vectst A generalized softmax is a
softmax function operating on logits; () and a temperature
T € R™. Here,k € {1,--- , K}, whereK is the total number

of classes. We denotg, () as simplyz, and assume the de-
pendence ow is implicit. The outputy,(T") of the generalized

softmax is given by,

Y (T) = exp (z1/T)

Sy exp (z/T)

There are two extreme cases in Eq. (1). Lgl') =
[y1(T)---yx(T))'. For very hot T > 1) and cold tem-
peratures T < 1), y(T') approaches the uniform and 1-hot
distribution respectively. Thusimr_. yx(T) = + and
lim7 0 Y& (T) = Lik=arg max e The 1-hot distribution is the
1<ji<K
result of assigning one to the highest elemeny (") while as-
signing zero to the remaining elements. In the KD framework,
the student model is trained to minimize the loss,

@

Exp = pC(p,y(1)) + (1 = p)C(q(T),y(T)), (2)

h , K
e C(p,y(1)) = = pr logyi(1), 3
C(q(T),y(T)) == qu(T) log yx(T). 4)

The termp,. in Eq. (3) is the posterior probability of labél
given the feature vectog. Since this is generated from the

noisy PTs, it need not be a binary value 0 or 1 as described in
Section 1. Thusp need not be a 1-hot vector. Likewisg,(T")
in Eq. (4) is the posterior probability of labél generated by
feedforwardinge through a teacher DNN equipped with a gen-
eralized softmax with temperatuf8. In other words, it is a
teacher label. In the under-resourced scenario, the teRdts
is a reasonably well-trained multilingual DNN trained widii's
from WRLs. The termy,(T) in Eq. (4) is the posterior proba-
bility of label k£ generated by feedforwarding through a stu-
dent DNN equipped with a generalized softmax with tempera-
tureT. The student DNN is the target language DNN trained
with PTs from the URL. The term (1) in Eq. (3) is a special
case ofy; (T) with T' = 1. Finally, p is a weight that balances
the losses in Eq. (3) and Eq. (4).

During backpropagation, the gradient of Eq. (4) with re-

spect to the student logt, i.e., 2522, is artificially scaled

by T2. This is because the gradient itself is a function 612
Thus, the artificial scaling removes the dependenc@ 0As a
result, the individual backpropagation errors from Eq. 483
Eq. (4) have similar ranges and can be added meaningfully.

Knowledge distillation specializes to several interestin
cases. Whemp = 1, Eg. (2) is the same as the standard CE
loss. Wherd < p < 1 andT = 1, Eq. (2) is equivalent to reg-
ularizing the CE loss with Kullback-Leibler Divergence (Rl
[23]. Whenp = 0 (indicating the absence of ground truth la-
belsp), Eqg. (2) can be used for unsupervised adaptation. For
example, in the case ¢f = 0, T = 1 and when the student
DNN is not initialized from a teacher DNN, Eq. (2) was used
for unsupervised adaptation using the teacher labelsreutai
from a large teacher DNN [12]. Whem = 0, T = 1 and
the student DNN is initialized from the teacher DNN, tragnin
using Eqg. (2) is equivalent to self-training. Here, the teada-
belsq(1) are identical to the outputg(1) of the student DNN
before the first weight update of the student DNN. However, af
ter that, the teacher labels are kept constant whereasuithergt
outputs are allowed to differ with every weight update.

3. Target Interpolation (T1)

In this section, we provide a brief outline of the Tl framekior
We will omit the dependence dh since in this sectioi’ = 1
always. First, we defin€'(f(y), y) as,

C(f(y),y) == f(yx) log ys, ®)

wheref(.) is an element-wise function ef satisfyingf (yx) €
[0,1] and}", f(yx) = 1. The DNN is trained to minimize the
loss,

E=pC(p,y)+ 1 -p)C(f(y),y),

=Clop+ (1 -p)f(y)y), (6)

where C(p, y) is as defined in Eq. (3). The second step in

Eq. (6) is due to the linearity of’(.,.) in the first argument.
We consider two among several choices ¢f). They are,

Yk, (soft)
FWR) = 3 1 ez arg max 4] (hard)

1<G<K

Plugging in Eq. (7) and Eqg. (5) into Eq. (6), we get,
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Bsot=—»_(ppx + (1= p)yx) log y, (8)
k=1
K
Ehard = - Z(Ppk + (1 - p)]l[k:arg max yJ]) log Yk (9)
k=1 1<j<K

Corresponding error gradients for the losses in Eq. (8) and
Eq.(9) are,

OF.
a;:“ = p(yr — ) + (1 = p)yu(I(yx) — H(y)),  (10)
OF)
3 hard = P(yk — pk) + (1 — p)(yk - ]l[k:argmaxyj])> (11)
Zk 1<j<K
where,

I(yx) = — log yx,
K

H(y) =~ yxlogys.
k=1

The motivation behind the choices in Eq. (7) is that we use the
label confidences of the DNN(y;) to modify the noisy PT la-
belspy. Thus, the new ground truth label is an interpolation be-
tweenp, and f(yx). For the soft case, we use the entire output
distribution of the DNN. Then the loss in Eq. (8) becomes the
standard CE loss with entropy regularization. A DNN trained
using this loss function will find a balance between minimiz-
ing the CE los<”(p, y) while also lowering the entropy of its
outputsC(y, y). Since PTs are prone to high entropies, lower-
ing the entropies of the DNN outputs is desirable. For the har
case, we simply binarize the DNN outputs to a 1-hot distribu-
tion. Compared to the soft case, the hard case ignores thg-cro
correlations between different classes. In both casesevew
the new interpolated labels still form a valid probabilitigtai-
bution since they sum to one when summed overthgasses.

4. Experimentsand Results
4.1. Data

Multilingual audio files were obtained from the Special Btoa
casting Service (SBS) network which publishes multilingaa
dio podcasts in Australia. The corpus is summarized in Ta-
ble 1. Natively transcribed DTs in Arabiar®), Cantonese
(yue), and Hungarianhun) were always treated as data from
source WRLs. Non-natively transcibed PTs were used as data
from the target URL. We experimented with four target URLs
- Swahili (swh), Amharic @mh), Dinka (din), and Mandarin
(cmn) - in a round-robin fashion. For example, sivh is the
target language, then the training set consists of P$stfirand
DTs in the remaining six languageanth, din, cmn, arb, yue,
hun). Thus, the training set excludes DTssmh. In this sense,
our experiments fall under the domain of zero-resourcecpee
recognition.

More than 2500 Turkers participated in transcribing, with
roughly 30% of them claiming to know only English. The
remaining Turkers claimed knowing other languages such as

Table 1: SBSMultilingual Corpus.

Language Utterances Phones
Train  Test

Swahili (swh) 462 123 48

Amharic (amh) 516 127 37

Dinka (din) 248 53 27

Mandarin (cmn) | 467 113 52

Arabic (arb) 468 112 46

Cantonese (yue 544 148 32

Hungarian (hun)| 459 117 65

All - - 82

The important criterion was that the annotated lettersasnt
sounds they heard from the utterances as if they were Iigieni
to a sequence of nonsense syllables in some exotic language.
Since no Turker is likely to generate the perfect transioipt
each utterance was transcribed by ten Turkers creatingiften d
ferent transcriptions per utterance. These transcriptivare
converted to phones and merged into a PT [1]. Approximately
$500 was paid per ten Turkers for transcribing an hour of au-
dio. As for DTs, the same set of utterances were transcribed
by native speakers in the target language. However, the DTs
in the target language were used only for evaluating the ASR
performance on the test set.

The training set consists of a) about 40 minutes of PTs in
the target URL and, b) about 40 minutes of DTs in multiple
WRLs. The development and test sets were worth 10 minutes
each. The test utterances were randomly selected to avgid an
speaker or gender bias. Going back to our previous exanfiple, i
swh is the target language, then the training set consists of 40
minutes of PTs iswh and 40 minutes of DTs each amh, din,
cmn, arb, yue, hun (total40 x 6 = 240).

All experiments were conducted using the Kaldi toolkit
[24]. Kaldi source code in C++ and toy examples of the pro-
poseld KD and Tl frameworks are available in our github repos-
itory.

4.2. Experiments

In this section, we describe the features, baseline, angrtie
posed experiments. Thirteen Mel Frequency Cepstral Coeffi-
cients (MFCCs), spliced with +/- 3 neighboring frames, were
extracted from speech utterances. These were then tremedor
using a Linear Discriminant Analysis (LDA) transform fol-
lowed by Feature-Space Maximum Likelihood Linear Regres-
sion (fMLLR) transform resulting in 40-dimensional fMLLR
features. These features were kept low dimensional to dkieid
curse-of-dimensionality problem which is more likely tccac
in under-resourced scenarios. These features were them mea
normalized using Cepstral Mean Normalization (CMN) before
using them for DNN training.

As for the labels in DNN training, the forced aligned
senones obtained from HMM models were treated as the ground
truth labels for DNN training. Since a PT is a confusion net-

Spanish, French, German, Japanese, and Mandarin. It may be work, forced alignment performed on a PT produces a training

noted that PTs for Mandarin audio were never collected from
Mandarin speaking Turkers. The utterances were limited to
a length of 5 seconds. This is because the Turkers did not

alignment lattice as opposed to a conventional trainiaiggn-
ment sequence from a DT. Running forward-backward recur-
sion on the alignment lattice generates the frame-levetkepes

understand the utterance language and it was easier for them ors which are soft as opposed to 1-hot. These soft labels were

to annotate short utterances than long. Since English veas th

most common language among the Turkers, they were asked
to annotate the sounds using English letters. The sequédnce o
letters was not meant to be meaningful English words or sen-
tences since this would be detrimental to the final perfogaan

treated as the ground truth labels during DNN training. hon
based language models (LMs) were built from text data in the

1git clone -b teacher-student
https://github. comirrawaddy28/ SBS- kal di - 2015
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Table 2:PERs of different MTL systems trained with CE, KLD,
and KD losses. The parameters p and T are the weighting and
temperature parameters in Eq. (2).

Table 3:PERs of different MTL systems trained with CE and Tl
losses. The parameter p is the weighting parameter in Eq. (8)
and Eq. (9).

System Parameters Language System Parameter Language
p T swh amh din cmn p swh amh din cmn

Baseline (CE)| 1 1 4489 60.7p 58.65 53.53 Baseline (CE) 1.0 4489 60.7p 58.65 53.53
KLD 0.6 1 44.11| 59.97| 58.19 51.00 TI (Hard) 0.6 43.96| 60.44 58.6 51.14
KLD 0.4 1 44.21| 59.36| 58.33 50.29 TI (Hard) 0.4 44.08| 59.99 57.94 49.81
KLD 0.2 1 44.63| 59.55| 58.65 50.93 TI (Hard) 0.2 44.24| 60584 59.19 51.20
KD 0.6 2 44.12| 59.82| 58.15 50.93 TI (Soft) 0.6 43.49| 60.19 58.62 51.09
KD 0.4 2 43.66 | 59.40 | 57.97 | 49.85 TI (Soft) 0.4 43.29 | 59.65 | 57.65 | 50.02
KD 0.2 2 44.40| 59.08 | 58.26 | 49.38 TI (Soft) 0.2 44.16| 61.14 59.26 50.79

target language mined from Wikipedia. Consequently, a phon

based decoder was used to generate the final ASR hypotheses — zng

which were evaluated using PERs. The following experiments
were performed in our evaluation:

e Basdine[2], [10]: An MTL system was trained consisting
of six shared hidden layers and two separate softmax layers
(one softmax per task). The shared hidden layers of the MTL
system were initialized from a multilingual DNN. Both the
tasks were trained to minimize the CE loss. However, the
targets at the first softmax were PTs from a target URL. The
targets at the second softmax were DTs in the remaining six
WRLs. We do not train with DTs in the target URL.

¢ KLD Regularization [23]: Instead of minimizing the stan-
dard CE loss, the first task of the MTL system was trained to
minimize Exp in Eq. (2) for the special case @ = 1 and
0 < p < 1. Specifically, values op € {0.2,0.4,0.6,0.8}
were evaluated.

* Knowledge Digtillation: The first task of the MTL system
was trained to minimizeikp in Eq. (2) with0 < p < 1
andT > 1. Specifically, values of" € {2,3} andp €
{0.2,0.4, 0.6, 0.8} were evaluated.

e Target Interpolation: The first task of the MTL system was
trained to minimizelsort in EQ. (8) orEharain EQ. (9). Values
of p € {0.2,0.4, 0.6, 0.8} were evaluated.

4.3. Results

The PERs comparing the MTL systems trained with CE, KLD,
and KD losses are outlined in Table 2. The systems are named
eponymously after their loss types. We highlight only thestno
interesting cases with in the ranged.6 — 0.2 andT = 1, 2.
Analyzing each language column in Table 2, it is clear that th
KD systems outperform the baseline CE and KLD systems.
Now, we analyze the effect af andp on PERs. Keeping
p fixed and varyindr is equivalent to comparing KLD vs KD
systems. Thus, keepingconstant, KD systemd{ = 2) out-
perform their KLD counterpartsi{ = 1) most of the times. In-
creasingl’ makes the class correlations more pronounced. This
indicates that the temperature parameter improves theaene
ization capacity of the DNNs by preventing overfitting to the
noisy PTs. Next, keepin@ = 2 fixed and varying is equiv-
alent to limiting our comparison within the variants of KDssy
tems. Asp decreases, the PERs tend to decrease first and then
increase. Desirable values pfarep < 0.5. From Eg. (2),
this implies that the peformance improves when the system re
lies increasingly on the teacher labels rather than the Bdida
However, this trend reverses for very low valueg oFor exam-
ple, in the extreme case when= 0 (completely ignoring PT
labels), we noticed exceedingly high PERs above 85%. This

Table 4: Summary of the best proposed systems. Absolute im-
provements over the baseline system inside parantheses.

Baseline (CE) Best Parameters

PER PER System ) T
swh 44.89 43.29 (1.60) TI(Soft) 0.4 1
amh 60.79 59.08 (1.71) KD 0.2 2
din 58.65 57.65 (1.00) TI(Soft] 0.4 1
cmn 53.53 49.38 (4.15) KD 0.2 2

proves that a combination of PT and teacher labels are more
useful than solely using either of them.

The PERs comparing the CE and Tl systems are outlined
in Table 3. Again, we highlight only the most interestingess
of p (0.6 — 0.2). Clearly, both (Hard and Soft) variants of Tl
systems outperform the baseline CE system. Among the Tl sys-
tems, Tl (Soft) outperforms Tl (Hard) for the African langes
(Swabhili, Amharic, Dinka) whereas it is the opposite for Man
darin. Suprisingly, for both TI (Hard) and Tl (Soft), = 0.4
is the most desirable value. Quite conveniently, this valuge
does not change across languages explored in this study. Sim
ilar to the KD system, values gf < 0.5 imply that the pe-
formance improves when the system relies increasingly en th
DNN labels rather than the PT labels. This means interpoiati
is useful and that the new interpolated targets are efiedtiv
alleviating the noise in PT labels. However, similar to the K
system, setting = 0 results in very high PERs.

Finally, a summary of the best proposed systems for each
language, along with their parameters, is highlighted in Ta
ble 4. The average improvement is about 1.9% absolute for
each KD and TI. This is quite useful considering that this is a
zero-resource scenario with no access to reliable grourh tr
DTs in the target URL.

We conducted additional experiments in an attempt to fur-
ther boost the performance of the best KD systems. Since the
PT distributionp is a soft distribution, we parameterizpdvith
a new temperature paramefr. After changingp to p(Ter),
we minimze the KD los#p in Eq.(2). We noticed an improve-
ment in PER over the best KD systems by about 0.2% absolute
whenTpr = 2. Since the improvement is marginal, we continue
to investigate ways to improve.

5. Conclusions

In this study, we reported further improvements in DNNs
trained with noisy non-native transcriptions (PTs) whilet n
having access to native transcriptions (DTs) in the target |
guage. We proposed Knowledge Distillation and Target inter
polation to alleviate the effect of noise in PTs. We observed
consistent improvements in PERs for all the languages eagblo

in this study. For each of the proposed methods, we reported a
average absolute improvement of 1.9% over the baseline sys-
tem.
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