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Abstract
Domain mismatch continues to be a major research challenge
for speaker recognition in naturalistic audio streams. This study
presents a new technique for domain mismatch compensation
within a text-independent speaker recognition scenario. The
proposed method is designed for the NIST speaker recogni-
tion evaluation 2016 (SRE16) task, where speakers from train-
ing, development and evaluation data belong to different sets
of languages. An i-vector/PLDA speaker recognition system
is adopted for this study. To address the mismatch problem,
we propose to append auxiliary features to the i-vectors. These
auxiliary features are adapted representations of the i-vectors
to the specific in-domain data; therefore, the new feature vector
has two parts: (1) i-vectors which represent speaker identity and
(2) auxiliary features which are representations of i-vectors in
the in-domain data feature space (and may not contain speaker
identity information). This new concatenated feature vector (we
call this a-vector) is then post-processed with support vector
discriminant analysis (SVDA) for further domain compensa-
tion. Evaluations based on the SRE16 confirm the effective-
ness of the proposed technique. In terms of minimum Cprimary
cost, a-vector outperforms the i-vector consistently. Moreover,
comparing to previous single systems introduced for SRE16, we
achieved 8.5%-18% improvements in terms of equal error rate.
Index Terms: speaker recognition, domain mismatch, auxiliary
features, domain-adapted triplet loss function, a-vector.

1. Introduction
Speaker recognition is the task of recognizing whether an un-
known speech segment was produced by a target speaker or
not [1]. NIST has been organizing a series of speaker recogni-
tion evaluations (SRE) for many years to evaluate new advances
in this area and continue to explore new challenges to address
the recent concerns of automatic speaker recognition systems
as well as more realistic data [2]. The most recent SRE (i.e.,
SRE16) was focused primarily on domain mismatch problem
(i.e., train, development and evaluation data belong to separate
sets of languages). In addition, some other differences com-
pared to previous SREs were introduced in SRE16; such as,
greater duration variability, providing a pool of unlabeled in-
domain data, etc [2]. Interested sites world wide submitted their
systems, where results confirm that there is still a wide gap to
achieve effective performance for current mismatch challenges.
In this study, we present our continued advancements for the
NIST SRE16 and introduce new insights towards compensating
for specific domain mismatch cases seen in the SRE16.

In general, most submitted systems to the challenge (as well
as ongoing research after the challenge) used i-vectors [3] to
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compress speaker identity of given speech segments to a fixed
low-dimensional representation. However, variations are intro-
duced in the traditional steps of extracting i-vectors or calculat-
ing scores to suppress the domain mismatch. The key point here
is adopting unlabeled in-domain data.

In our solution [4], we extracted i-vectors using both UBM
and DNN based frameworks; the UBM/i-vector had signifi-
cantly better performance, but UBM-based and DNN-based i-
vectors are complimentary and their score fusion helped with
the overall performance. Support vector discriminant analy-
sis (SVDA), unlabeled probabilistic linear discriminant analysis
(PLDA), mean normalization using unlabeled data are among
the strategies we adopted to compensate for domain mismatch.

One group [5] used different feature sets, two classifiers
and three alternate models. Their submitted system consisted
of a fusion of four GMM/i-vector systems with pairwise sup-
port vector machine (SVM), two DNN/i-vector with pairwise
SVM, and one GMM-SVM with Nuisance Attribute Projection
(NAP). The latter system was trained on unlabeled data which
was clustered. They also studied other methods for unsuper-
vised compensation, using in-domain data for MAP adaptation
of GMM models which were shown to be effective.

For another team [6], their primary submission is fusion of
four different i-vector based systems. These four systems dif-
fered with respect to the feature vector which was then used for
training the UBM, total variability (TV)-matrix and extracting
the i-vectors. For domain mismatch compensation, they applied
multiple techniques: (1) whitening and mean centralization us-
ing in-domain data (2) multi-stage PLDA adaptation which also
uses clustered unlabeled in-domain data.

Another submission [7] used different features (MFCC,
PLP, BNF) and classifiers (PLDA, discriminative PLDA, SVM,
cosine distance, Latent Dirichlet Allocation). One new aspect
in their submission was training a speaker classifier neural net-
work for extraction of d-vectors. Interestingly, they did not at-
tempt to assign pseudo speaker labels to the unlabeled data.

The submissions to the challenge confirm that SRE16 is a
difficult task and needs further investigation. After the initial
SRE16 competition, different techniques are applied to over-
come the challenges introduced in SRE16. As an example,
[8] applied an unsupervised Bayesian adaptation method and
achieved promising results. On the other hand, [9] replaced i-
vectors with two new proposed embeddings which are derived
based on DNN architecture. They evaluated the performance
of the embeddings on both SRE10 and SRE16 tasks. In addi-
tion, domain mismatch has been previously studied for other
databases or tasks as well, including [10, 11, 12, 13, 14, 15].

Here, our goal is to employ in-domain unlabeled data to
achieve further compensation of domain mismatch. After the
challenge, NIST provided ground truth labels, but here we are
not using them or applying any clustering to generate pseudo la-
bels. The goal of our study here is leveraging unlabeled data to
improve our system in an unsupervised manner. In addition, of
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course score fusion of multiple complimentary systems always
helps. However, here we do not want to focus on the score
normalization or calibration, our goal is to just focus on devel-
oping an effective single system. We propose using auxiliary
and complimentary features in addition to i-vectors. These fea-
tures are specifically designed to only carry directions related
to the in-domain languages. For this purpose, we train a sim-
plified version of inception-v4 network [16] and propose a new
loss function (we call it domain-adapted triplet loss).

2. Problem Setup
2.1. Database

2.1.1. Training data

There are two training conditions defined for SRE16 task, (1)
fixed: using a fixed dataset for training; (2) open: additional
publicly available data are permitted to be used. Our focus is on
the fixed training condition, which includes data provided from
Call My Net corpus, previous Mixer/SRE data, both landline
and cellular Switchboard and Fisher [2]. Here, we did not use
Fisher data and Call My Net corpus for the training. Therefore,
in our system, the total number of speakers and segments used
for training UBM and TV-matrix are 5756 and 57273 respec-
tively. At the back-end, we also did not use any of the Switch-
board data, which leads to a total of 3794 speakers and 36410
segments for training LDA/SVDA/PLDA.

2.1.2. Development and evaluation data

Data assigned to the development and evaluation sets were col-
lected from the Call My Net corpus. Data was collected out-
side of North America and consists of two subsets: (1) Major:
contains Tagalog and Cantonese languages, (2) Minor: contains
Cebuano and Mandarin languages. Development data includes
data from both minor and major language sets; evaluation data
only contains data from the major set [2].

Development data includes labeled and unlabeled sets. The
labeled set is only from minor languages; 10 speakers talking
Cebuano and 10 speakers talking Mandarin, with each possess-
ing 10 segments. The unlabeled one has 2272 and 200 calls
from major and minor languages, respectively (They do not
have speaker id, language, gender, etc information) [2].

Overall, the total number of speakers/segments in en-
rollment set for development and evaluation are 80/120, and
802/1202, respectively. In addition, number of target/non-
target trials for development and evaluation are 4828/19312 and
1986729/1949666, respectively. Throughout the paper we refer
to the development as DEV and evaluation as EVAL.

2.2. Evaluation Metric

For SRE16, NIST provided a scoring software to the participat-
ing sites; it calculates the equal error rate (EER), minimum pri-
mary cost (min-Cprimary), and actual primary cost. In addition,
the software reports both equalized (false alarm and false reject
counts were equalized over various partitions) and unequalized
scores. Details on these costs and their calculation are provided
in [2, 17].

3. i-vector/PLDA speaker recognition
Speaker recognition is the task of recognizing whether a target
speaker is talking in a given speech segment or not. UBM/i-
vector with PLDA scoring is the state-of-the-art speaker recog-

nition. However, variations of this system had also successfully
applied to different problems and tasks in speaker recognition.
These variations include, DNN/i-vector [18], cosine distance
[19] or pairwise discriminant analysis [5] scoring with i-vector,
and etc. Here, as we use UBM/i-vector with PLDA scoring for
development of our system, a brief description on the system is
presented in this section.

Generally, the front-end of the UBM/i-vector system starts
with extracting Mel-frequency cepstral coefficients (MFCCs)
as the input feature vector. Next, non-speech segments of the
speech are removed with voice activity detection (VAD), which
we use energy-based VAD. Next, UBM and total variability
(TV)-matrix are trained and used for extraction of i-vectors. At
the back-end level, i-vectors are typically post-processed with
LDA and length normalization [20], PLDA finally calculates
the likelihood scores.

The baseline we used here is based on CRSS best single
system submitted to the NIST SRE16 [4]. We did not incorpo-
rate any of the development data or any part of the Call My Net
corpus at the front-end level; we mainly focused on the mis-
match compensation at the back-end level. One of the main
modules in our system that had a significant role in the success
of our submissions was SVDA, which we also used here. We
provided a brief description of that in the next subsection; more
details can be found in [21].

3.1. Support vector discriminant analysis (SVDA)

Discriminant analysis via support vectors (SVDA) is a varia-
tion of LDA; however within class and between class covari-
ance matrices are calculated in different ways. For both LDA
and SVDA, the following Â matrix is used for optimizing the
class separation criterion [22],

Â = argmax
AT SwA=I

[tr(ATSbA)], (1)

where Sw and Sb are within and between class covariance ma-
trices. For SVDA, between class covariance matrix is defined,

Sb =
∑

1≤c1≤c2≤C

wc1c2w
T
c1c2 , (2)

and the within class covariance matrix is

Sw =
C∑

c=1

∑

i∈Îc

(x̂i − µ̂c)(x̂i − µ̂c)
T . (3)

where the optimal direction to classify classes c1 and c2 with
a linear SVM is wc1c2 ; only support vectors of the two classes
are used for calculation of wc1c2 , instead of all samples in both
classes. X̂ = [x̂1, x̂2, ..., x̂N̂ ] contains all support vectors and
N̂ is their total number. Indexes of all support vectors in class c
and their mean are shown with Îc and µ̂c, respectively. Finally,
optimized Â includes the k eigenvectors related to the k largest
eigenvalues of S−1

w Sb

Similar to our submission to the challenge, here we also
use one-versus-rest strategy for training the linear SVM used in
the SVDA optimization. We always incorporate the unlabeled
data into the rest class, which means we do not need to cluster
unlabeled data and generate pseudo labels.

4. Domain mismatch compensation
For NIST SRE16 challenge, CRSS had 4 baseline systems (2
UBM/i-vector and 2 DNN/i-vector) and then developed 11 sin-
gle systems based on that with different strategies to address
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Figure 1: Overview of the system designed for generating aux-
iliary domain-adapted features and a-vectors.

the domain mismatch. Details of these systems are provided in
[4]. Our best single system used a UBM/i-vector speaker rep-
resentation that was post-processed with SVDA, LDA and final
scores were calculated with PLDA. SVDA was able to use unla-
beled in-domain data without any pseudo labels. Based on our
experiments and other participating sites, leveraging unlabeled
data for the purpose of adaptation or normalization was the key
point to achieve a good performance.

In this section, we propose a new method for domain mis-
match compensation and our work has been inspired by [23].
The focus of [23] is on speech recognition and authors pro-
pose to incorporate i-vectors as well for the input of DNN to
provide speaker, channel and background normalization, and
achieved a significant reduction in word error rate. Here, we
propose new auxiliary features to be concatenated with the i-
vectors. These features are domain-adapted representations of
i-vectors and we derived them based on a convolutional neural
network (CNN) and a new proposed loss function (which is a
variation of triplet loss function and we call it domain-adapted
triplet loss). In the rest of the paper, the concatenation of i-
vectors and the auxiliary features are referred to as a-vectors.
i-vectors represent speaker-dependent information while auxil-
iary features are domain adapted representations which are used
for the purpose of domain normalization. a-vectors are post-
processed with SVDA/LDA and likelihoods are calculated by
PLDA similar to our best single system which is used here as
the baseline. Details on the network architecture and the pro-
posed loss function are provided in the following subsections.

4.1. Convolutional neural network a-vector representation

4.1.1. Overview

The proposed system for extracting auxiliary features is a
simplified version of inception-v4 [16] and we call that sim-
inception-v4. Our network takes i-vectors as the input and gen-
erates the auxiliary features that minimize the loss function in-
troduced in 4.1.3. These auxiliary features are next concate-
nated with the i-vectors and created the a-vectors.

The overall system representation is shown in Fig. 1. The
network architecture is described in Sec. 4.1.2 and the loss func-
tion is defined in Sec. 4.1.3.

4.1.2. Network architecture

The network is illustrated in Fig. 2. It has the stem part,
inception-A and reduction-A part of the original inception-v4
network [16] (because of the limitations of our GPU we re-
stricted the network layers). Details of the network is exactly
the same as the inception-v4; however, tensors here are 1-D
therefore the weight shapes of the convolution neural network
are also changed to 1-D. The filter size on the remaining dimen-
sion is set to the exact values of the inception-v4. Please refer
to [16] for more details of the system.

Figure 2: simplified inception-v4 (sim-inception-v4) used for
generating domain-adapted i-vector. Please refer to [16] for
details on the Stem, Inception-A and Reduction-A.

4.1.3. Proposed domain-adapted triplet loss function

The loss function proposed here is inspired by the triplet loss
function. Triplet loss function was originally developed for
FaceNet [24] and is also successfully applied to speaker recog-
nition [25]. In [25] an end-to-end speaker recognition system is
developed to estimate a new embedding as a replacement for the
i-vector, and triplet loss is applied to make sure that the embed-
ding carries the speaker-related information. Here, we present
a domain-adapted triplet loss which maps the inputs of the net-
work to the in-domain feature space.

As Fig.1 shows, first i-vectors are sampled into triplet sets.
In the original triplet sampling, for an anchor feature vector one
positive and one negative feature vectors are sampled; the posi-
tive one has the same speaker identity as the anchor one and the
negative one has a different identity. Different strategies can be
adopted for the selection of triplets [24, 25].

Domain-adapted triplet loss in contrast has a different
meaning for the positive and negative samples. Here, for each
anchor feature vector, the positive samples are in-domain un-
labeled vectors (both from minor and major languages) and the
negative samples are out-domain vectors which are chosen from
previous years SRE data subset.

The loss function used for the training of the network mini-
mizes the distance between the anchor and positive samples and
maximizes the distance between the anchor and negative sam-
ples. It is clear that loss function applies to the output of the
sim-inception-v4 which is our output auxiliary feature vector.

If we represent anchor, positive and negative i-vectors with
xa, xp and xn respectively and define f(x) as the output auxil-
iary feature vector, then the network training process makes the
f(x) to satisfy the following relation:

||f(xai )− f(xpi )||22 + α < ||f(xai )− f(xni )||22,

∀xai , xpi , xni ∈ T
(4)

where T contains all possible triplets (xa, xp, xn), and α is
a margin enforced between negative and positive pairs (we set
α = 0.2 in our experiments). Therefore, the loss function is
defined as:

loss = Σi∈Tmax(0,∆i). (5)

where ∆ is defined as:

∆i = ||f(xai )− f(xpi )||22 − ||f(xai )− f(xni )||22 + α. (6)
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Generally, T contains all possible triplets, but this set will
be huge if we consider all combinations and makes the conver-
gence slower [24]; therefore, we selected a smaller subset of
that in the experiments. We chose 5 random samples from the
in-domain data as the positive i-vectors and 5 random i-vectors
from the previous SREs data as the negative ones.

The sampling for the domain-adapted triplet loss moves all
auxiliary features toward the in-domain features and far from
out-domain auxiliary features, in contrast to the original triplet
loss which makes the same speaker embeddings closer and dif-
ferent speaker embeddings farther.

5. Experiments
5.1. Experimental conditions

5.1.1. UBM/i-vector with PLDA scoring

60-D MFCC features within a 25-ms window with 10-ms skip
rate are extracted first. Next, non-speech frames are removed
with energy based VAD. A 2048-mixture full covariance UBM
and TV-matrix are trained using parts of fixed training data
of SRE16 (i.e., SRE2004, 2005, 2006, 2008 and Switchboard
II phase 2,3 and Switchboard Cellular Part1 and Part2). Ex-
tracted i-vectors are centralized with global mean calculated
from major and minor in-domain unlabeled data, and then they
are length normalized. Now, i-vectors are concatenated with
auxiliary features (output of sim-inception-v4). Output of the
system is 600-D which is reduced to 150-D by PCA. The 750-D
a-vectors are then fed into SVDA and their dimension reduced
to 500, next LDA reduces the dimension to 400. For training
LDA and PLDA only previous years SRE data is used (SWD
data is not used at the back-end at all). For SVDA, in addition
to the SREs data, unlabeled in-domain data is also used; which
is added to the rest class while training the SVM.

5.1.2. sim-inception-v4

In our experiments, for each epoch we randomly choose 500
speakers. All utterances of these 500 speakers are selected as
anchors, among previous years SRE data 5 utterances are cho-
sen randomly as negative samples and 5 utterances from in-
domain data are chosen as positive samples. Learning rate starts
with 1e-2 and after 50 epochs is set to 1e-3 and after 200 iter-
ations is 1e-4. The maximum number of epochs is 1000. RM-
Sprop optimizer is also used for the learning process.

5.2. Experimental results

This section presents experimental results comparing 4 different
systems: (1) i-vector + LDA, (2) a-vector + LDA, (3) i-vector +
SVDA, (4) a-vector + SVDA. In the tables i-vector and a-vector
are referred to as ivec and avec for simplicity.

Table 1 and 3 summarize EERs for the DEV and EVAL re-
spectively, results are reported for each language as well as on
the pooled data. Table 2 and 4 also represent min-Cprimary for
DEV and EVAL sets, respectively. For all cases, the SVDA-
based systems perform better than the LDA-based ones. In
table 2, ivec+SVDA has 3%/6% relative improvement over
ivec+LDA; for avec-based one also SVDA has 4%/6% improve-
ment over LDA. In table 4, ivec+SVDA achieved better perfor-
mance over ivec+LDA with 12%/14% rate; and for avec one
also SVDA achieved 13%/14% improvement over avec+LDA.
Improvements for EVAL data is more significant comparing to
the DEV data. Comparing a-vector against i-vector in table 2,
the a-vector one achieved 0.7%/0.6% and 2%/0.3% relative im-

Table 1: EER(%) equalized/unequalized scores on DEV

System Cebuano Mandarin Pool
ivec + LDA 21.42 / 21.78 9.14 / 9.75 15.59 / 16.08
avec + LDA 21.09 / 21.66 9.02 / 9.66 15.93 / 16.28
ivec + SVDA 20.47 / 21.66 8.14 / 8.76 15.58 / 15.95
avec + SVDA 20.69 / 21.70 8.31 / 8.88 15.35 / 15.91

Table 2: min-Cprimary equalized/unequalized scored on DEV

System Cebuano Mandarin Pool
ivec + LDA 0.9 / 0.841 0.488 / 0.481 0.701 / 0.671
avec + LDA 0.894 / 0.839 0.471 / 0.475 0.696 / 0.667
ivec + SVDA 0.877 / 0.799 0.464 / 0.453 0.679 / 0.629
avec + SVDA 0.868 / 0.797 0.462 / 0.452 0.668 / 0.627

Table 3: EER(%) equalized/unequalized scores on EVAL

System Tagalog Cantonese Pool
ivec + LDA 17.08 / 17.02 7.65 / 8.46 12.42 / 12.68
avec + LDA 17.21 / 17.05 7.48 / 8.25 12.41 / 12.6
ivec + SVDA 15.20 / 15.23 6.05 / 6.88 10.66 / 10.95
avec + SVDA 15.27 / 15.27 6.01 / 6.88 10.7 / 11.04

Table 4: min-Cprimary equalized/unequalized scores on EVAL

System Tagalog Cantonese Pool
ivec + LDA 0.902 / 0.906 0.606 / 0.617 0.797 / 0.806
avec + LDA 0.902 / 0.905 0.59 / 0.607 0.791 / 0.8
ivec + SVDA 0.829 / 0.818 0.53 / 0.55 0.698 / 0.697
avec + SVDA 0.828 / 0.815 0.527 / 0.55 0.689 / 0.691

provements for LDA and SVDA based systems. And for the
EVAL data also has a similar range of improvements.

The results show that, SVDA consistently outperforms
LDA, and improvements are more significant for min-Cprimary.
Comparing i-vector and a-vector, in terms of min-Cprimary
there is always a marginal improvement with a-vectors. How-
ever, in terms of EER improvements are not consistent.

The results show that the proposed a-vector is a promising
representation; however, we think that if in each iteration we
present a better selection of triplet sets, clear and consistent im-
provement might achieve.

Comparing our proposed system against those single sys-
tems (systems with no score fusion) introduced in [8, 9], we
achieved 8.5% and 18% improvements respectively in terms of
EER (their best performing single systems have been compared
against here); and in terms of min-Cprimary a-vector is compet-
itive with those single systems (a-vector achieved 0.689 and for
those systems min-Cprimary are 0.686 and 0.689 respectively).

6. Conclusions
This study has presented a new method for compensation of
the domain mismatch problem in SRE16. The proposed so-
lution was based on concatenation of domain-adapted auxil-
iary features and the original i-vectors to normalize for specific
language-dependent directions. For this purpose, we modeled a
simplified version of the inception-v4 network to map i-vectors
to these new auxiliary features. During the training process, we
also proposed a new loss function called domain-adapted triplet
loss function. Evaluations were based on SRE16 data, with re-
ported EERs and min-Cprimary costs on DEV and EVAL sets
confirming that the proposed method is promising in effectively
addressing mismatch.
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