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Abstract
We address prediction of turn-taking considering related behav-
iors such as backchannels and fillers. Backchannels are used by
the listeners to acknowledge that the current speaker can hold
the turn. On the other hand, fillers are used by the prospective
speakers to indicate a will to take a turn. We propose a turn-
taking model based on multitask learning in conjunction with
prediction of backchannels and fillers. The multitask learning
of LSTM neural networks shared by these tasks allows for ef-
ficient and generalized learning, and thus improves prediction
accuracy. Evaluations with two kinds of dialogue corpora of
human-robot interaction demonstrate that the proposed multi-
task learning scheme outperforms the conventional single-task
learning.
Index Terms: turn-taking, backchannel, filler, neural networks,
multitask learning

1. Introduction
In the past years, a variety of spoken dialogue systems have
been deployed in smartphones, smart speakers, and humanoid
robots. In a majority of the applications, the systems are de-
signed to conduct specific tasks or information retrieval such as
queries on weathers, public transportation, and personal sched-
ules. In these scenarios, users are expected to utter a query of
one sentence, which will be responded by the system. In this
kind of dialogue, turn-taking protocol is explicit to the user.
Actually, the push-to-talk protocol is used in smartphones, and
magic words are used in smart speakers.

On the other hand, this turn-taking protocol is not natural
in human-human conversations, in which many sentences are
uttered in a turn, and backchannels are occasionally generated
during the dialogue partner’s turn. Advanced studies on spoken
dialogue systems should include human-like dialogue in terms
of tasks and styles. When we adopt humanoid robots or human-
like agents, users naturally expect the system to talk like a hu-
man. The tasks of the system are extended to cover long conver-
sations including job interviews and attentive listening to senior
people. In this kind of dialogue, the systems are required to
conduct human-like turn-taking behaviors.

Turn-taking is actually a very important and difficult prob-
lem in spoken dialogue systems, and that is a reason why cur-
rent smartphones and smart speakers adopt the push-to-talk in-
terface or magic words. Without these constraints, inappropri-
ate turn-taking easily leads to crash of dialogue, for example,
the system starts speaking while the user keeps or takes a turn.
Conventional systems often assume a long pause (e.g. 1 second)
implies the end of a turn. But this is not only natural but also
may trigger the user’s next utterance, which will be crashed by
the system’s utterance. Therefore, the problem of appropriate
turn-taking is reduced to detection of the end of the user turns
as early as possible based on the content and prosodic cues of
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Figure 1: Possible turn-taking behaviors considering relation-
ship with backchannels and fillers

his/her utterance. In this paper, we focus on the prosodic cues
because automatic speech recognition of spontaneous conversa-
tions by distant microphones deployed in a humanoid robot is
still difficult and produces many errors.

Detection of the end of turns (with prosodic cues) may not
be so easy even for humans. In fact, the end of turns is defined
by turn-taking by the dialogue partner; if the dialogue partner
does not take a turn, the current speaker might continue the
turn. When the turn-switching/keeping is ambiguous, we can
use backchannels or fillers. When we do not want to take a
turn, we can generate backchannels to encourage the dialogue
partner to keep talking. On the other hand, fillers are used to
suggest to take a turn. Thus, we can make a conceptual plot of
turn-taking probability and possible actions in Figure 1.

It is well-known that backchannels and fillers are related
with the turn-taking behavior [1, 2], and prediction of these
events, particularly backchannels, has been intensively stud-
ied using many kinds of features and machine learning tech-
niques [3, 4]. Recently, neural network models such as LSTM
are introduced to the problem of turn-taking [5, 6]. However,
these problems are separately formulated and the prediction
models are independently trained.

In this paper, we address joint training of turn-taking and
prediction of backchannels and fillers by considering their re-
lationship. Since these problems share the feature extraction
process, we can design a neural network with shared layers and
multitask learning. The proposed integrated model consists of a
shared LSTM layer and individual feed-forward layers to deter-
mine the next action on not only turn-taking but also backchan-
nels and fillers simultaneously. This joint learning will lead to
a synergy in the prediction performance. Moreover, the frame-
work will realize human-like turn-taking behaviors, for exam-
ple, to generate a filler before taking a turn.
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2. Related Works
2.1. Turn-taking Prediction

There are many studies to analyze turn-taking behaviors and
predict turn-taking at the end of the utterances by using features
of the preceding utterances and to decide whether the current
speaker’s turn has ended. A large majority of them showed that
prosodic features such as pitch and intensity provide useful cues
[7, 8, 9, 10, 11], and many studies conducted prediction using
machine learning such as SVM and neural networks [2, 12, 1].

There are some works that investigated other features in
speech such as N-gram model [13], dependency structures
[14], and the previous turn-taking behaviors [15]. There are
also other works that investigated non-verbal features such as
respiratory features [16], head pose features [17], and eye-gaze
features [18].

In this paper, we focus on prosodic features which are ob-
tained easily and robustly. In the past works listed above, a
variety of parameterization methods were investigated, but very
recently, a simple recurrent neural network model or LSTM has
been introduced to input frame-wise pitch and intensity values
and process in sequence to extract effective features to mini-
mize the objective function, in this case, errors of prediction of
turn-taking events [5, 6, 19].

While Masumura et al. [6] and Liu et al. [19] also incorpo-
rated word embedding information, we focus on prosodic fea-
tures because the primary goal of this work is to investigate the
joint learning of turn-taking and backchannel/filler prediction.

2.2. Backchannel Prediction

A backchannel is a short response such as “um” and “right”
which the listener utters without taking the speaker’s turn.
Backchannels have a function to encourage the current speaker
to hold the turn and continue to speak. There are a number of
studies to predict backchannels by using prosodic features of the
preceding utterance such as pitch and power [20, 21, 22, 23, 3],
as well as linguistic features [24, 25]. Note that the prosodic
features are generally same as those used in turn-taking predic-
tion addressed in the previous sub-section.

2.3. Filler Prediction

A filler is a short phrase which fills a pause in conversations,
such as “uh” and “so”. Fillers have a function to indicate that the
interlocutor is thinking about the next utterance and to relieve
an embarrassed silence. Thus, fillers suggest holding the current
turn, or taking a turn.

Several studies investigated the prosodic features of fillers
[26, 27], but there are only a limited studies on prediction of
fillers [28, 29].

3. Dialogue Corpora
We have collected corpora of several dialogue tasks between
subjects and an android (humanoid robot) ERICA [30].
ERICA looks and behaves like a female including facial
expressions and nodding, but was remotely operated by a
female actress for the corpus collection. As a result, the col-
lected dialogue was very close to human-human dialogue. In
this study, the following two kinds of dialogue corpora are used.

Job interview
ERICA conducts a job interview on a subject, who plays a role
of an applicant to some company which he/she was interested

Table 1: Detail of prediction points after IPU. In this table,
BC means an occurrence of backchannels and NOT means not
occurring of backchannels, and Filler means an occurrence of
fillers and NOT means not occurring of fillers.

Corpus Preceding Prediction points
speaker SWITCH KEEP

Job interview Interviewer 175 642
Interviewee 276 620

Attentive listening Speaker 306 1,131
Listener 162 364

Corpus Interlocutor Prediction points
BC NOT

Job interview Interviewer 223 884
Interviewee 52 894

Attentive listening Speaker 74 626
Listener 741 1,175

Corpus Interlocutor Prediction points
Filler NOT

Job interview Interviewer 473 1,580
Interviewee 287 1,766

Attentive listening Speaker 403 2,213
Listener 286 2,330

in. An interview was done by asking questions regarding the
motivations and the skill of the applicant. There are 15 sessions
and each session is about 10 minutes long. There are four
operators of ERICA, one assigned to each session. Subjects
are college students and differ from one session to another. In
this task, the interviewer (robot operator) has an initiative of
the dialogue, but a majority of the utterances are done by the
interviewee (subject). Backchannels are generated mostly from
the interviewer in this task.

Attentive listening
ERICA conducts an attentive listening to an elderly subject.
The subject talks about some topic he/she chose beforehand,
such as “memorable travel” and “important life event”. An
attentive listening was done by using backchannels and some
questions. There are 15 sessions and each session is about
10 minutes long. There are four operators of ERICA, one
assigned to each session. Subjects differ from one session to
another. In this task, the speaker (subject) has an initiative of
the dialogue, and makes a large majority of the utterances in
the session. There are a few turn-taking events by the listener
(robot operator), thus their prediction is very difficult. On the
other hand, she uses many backchannels.

Since the turn-taking behaviors differ depending on the task
and initiative of the dialogue, we train a dedicated model to each
corpus though the model architecture is the same. Moreover,
the turn-taking behaviors differ between the robot and subjects
in these tasks. Thus, we train separated models for the subjects
and for the robot, but we focus on the behavior of the robot
(dialogue system) for evaluation.

Prediction of turn-taking, backchannels and fillers are con-
ducted after each utterance (IPU) by the subject. The statistics
of the prediction points are listed in Table 1.
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4. Integrated Prediction Model by
Multitask Learning

4.1. Baseline Model

In this study, the turn-taking model is built referring to the
LSTM-based model proposed by Skantze [5]. This model is
prepared for each interlocutor role. This model receives the
features described below at each time frame, and it outputs the
probability that the target interlocutor will be speaking within
1 sec. The frame shift size is 50 msec. Therefore, an output
is a 20-dimensional vector (=1000 msec / 50 msec) and each
dimensional value corresponds to the utterance probability at
each time frame in the future. Then, the label used for train-
ing the model has also 20 dimensions and each dimension is
binary, which represents whether the interlocutor utters at the
time frame. Input features are voice activity, pitch, intensity and
spectral stability, and these are extracted for each interlocutor.

Voice activity: A binary feature representing the current
voice activity (speech/no speech) of each interlocutor. The
voice activity was extracted from the annotation of the corpus.

Pitch: The pitch and ∆, ∆∆ value of it were automatically
extracted by using Praat1 and then z-normalized for the individ-
ual interlocutors.

Intensity: The intensity and ∆, ∆∆ value of it were auto-
matically extracted by using Praat, and then z-normalized for
the individual interlocutors.

Spectral stability: The spectral stability was calculated by

St =

∑N
f=1 abs(st,f − st−1,f )

∑N
f=1 st,f

(1)

where N is the number of frequency bins and st,f is the power
in frequency bin f at time t. This value was z-normalized for
the individual interlocutors. The power spectrum was extracted
by using librosa, which is one of Python libraries.

These 16-dimensional features are input to LSTM sequen-
tially frame by frame. The baseline model has one LSTM (18
units) and three fully connected layers (20 units in these three
layers) are added prior to the output.

In this paper, turn-taking is predicted using this model at
the end of each IPU. IPU is detected when a 200 msec pause
goes by after the end of an utterance. This pause length was
decided to surely judge whether each utterance is IPU or not. If
this length is too short like 50 msec, the prediction point may be
where prediction is not necessary, for example, obviously dur-
ing the turn. If this length is too long like 500 msec, it is too late
to predict turn-taking. At each prediction point, the sum of 20-
dimensional output is calculated for each interlocutor, then the
interlocutor with a larger value is judged as the next speaker.
SWITCH is defined as the result of prediction when the pre-
ceding speaker and the next speaker are not the same people,
and KEEP is when the preceding speaker and the next speaker
are same. We exclude points from evaluation when either inter-
locutor starts speaking before 200 msec pause from the end of
each utterance or when both interlocutors will speak or will not
speak within future 1 sec.

4.2. Integrated Model

The model is extended to an integrated model which predicts
not only turn-taking but also backchannels and fillers. Figure 2
depicts the proposed model in this study. In this model, the lay-

1Boersma, Paul & Weenink, David: Praat, http://www.praat.org/
(2016).
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Figure 2: Integrated model utilizing multitask learning (FC:
Fully Connected layer). Backchannel and filler are predicted
for each interlocutor.

ers shared by the prediction tasks extract the common features,
and separated layers for each prediction task makes a decision.
This makes it possible to consider the relationship between the
different tasks and to better predict turn-taking at points when
it is difficult to predict. The same 16-dimensional features as
the baseline model are used. This model is optimized by the
following objective function.

L = α× Lturn + β × (Lbc + Lfiller) (2)

where Lturn is a loss function for the turn-taking prediction,
Lbc and Lfiller are loss functions for the backchannel and filler
prediction. α and β represent a weight for each loss function.
In addition, the loss function for each prediction task was cal-
culated by the following function.

Ltask =

{
rtask,N ×MSEtask (if positive instance)

rtask,P ×MSEtask (otherwise)
(3)

where rtask,N is the rate of negative instances in task and
rtask,P is the rate of positive instances in task. MSEtask is
a mean-squared error loss function for task.

In order to predict backchannels and fillers, this model out-
puts probabilities whether the event occurs within 1 sec. in the
future. Therefore, the label is a binary value. For prediction of
backchannel/filler prediction, we use the same points as those
for turn-taking. Since backchannels are not used by the current
speaker at the end of the utterance, such points are excluded
from backchannel prediction.
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Table 2: Result of turn-taking prediction after subject’s (inter-
viewee’s) utterance in the job interview corpus

model SWITCH KEEP
Precision Recall F score Precision Recall F score

baseline 79.3 69.2 73.9 87.0 91.9 89.4
multitask 84.2 71.4 77.3 88.1 94.0 91.0

Table 3: Result of turn-taking prediction after subject’s
(speaker’s) utterance in the attentive listening corpus

model SWITCH KEEP
Precision Recall F score Precision Recall F score

baseline 54.6 48.7 51.5 86.5 89.0 87.8
multitask 60.4 47.4 53.1 86.5 91.6 89.0

5. Experimental Evaluations
5.1. Setup

Evaluations for each dialogue corpus were done with a 5-fold
cross validation. Prediction models are trained for each inter-
locutor role in each dialog corpus (e.g. interviewer (robot) and
interviewee (subject) in the job interview corpus).

A sigmoid activation function was used for the output lay-
ers and a ReLU function was used for the hidden layers. The
weights were optimized for each mini-batch including 30 sam-
ples (a sample is 20 sec. time series data). They were updated
using RMSProp and the learning rate was set to 1.6 × 10−3.
The learning rate was halved when the loss for the test data was
not reduced during 10 epochs, and it was halved up to 4 times at
most. The dropout ratio between each layer was set to 0.2. We
used 18 hidden nodes in the LSTM layer and 20 hidden nodes
in the upper fully connected layers.

For the weights of multitask learning in Equation (2), we
used α = 0.6 and β = 0.2 (for each of 2 sub-tasks) when turn-
taking prediction is the main task. When turn-taking prediction
is not the main task, we used 0.8 as the weight of the main task
and 0.1 as the weights of two predictions of turn-taking (sub-
ject’s turn prediction and robot’s turn prediction). All networks
were implemented with Keras 2.1.2 2 using TensorFlow 1.4.1 as
backend. We adopted precision, recall and F-score as evaluation
measures for each prediction task.

5.2. Results

Since we were interested in the robot’s (system’s) turn-taking
behavior after the subject utterance, Table 2 and 3 show the re-
sults of turn-taking prediction when the preceding speaker is
the subject. It is observed that the SWITCH precision of both
corpora were significantly improved by the multitask learning.
Considering the information of not occurring backchannels and
occurrence of fillers by the next speaker, the proposed model
could predict turn-taking more accurately even when it is diffi-
cult to predict. It is shown that the KEEP recall of both corpora
were also improved by the multitask learning. This is because
the proposed model can consider the occurrence of backchan-
nels of the current listener and fillers of the current speaker.

Prediction results of backchannels and fillers are reported

2Chollet, F. et al.: Keras, https://github.com/keras-team/keras
(2015).

Table 4: Result of robot’s (interviewer’s) backchannel predic-
tion in the job interview corpus

model BC
Precision Recall F score

baseline 25.8 79.4 38.9
multitask 27.8 87.0 42.1

Table 5: Result of robot’s (listener’s) backchannel prediction
in the attentive listening corpus

model BC
Precision Recall F score

baseline 45.5 89.2 60.3
multitask 44.2 91.4 59.6

Table 6: Result of robot’s (interviewer’s) filler prediction in
the job interview corpus

model Filler
Precision Recall F score

baseline 31.4 84.4 45.8
multitask 31.1 88.8 46.0

in Table 4, 5 and 6 respectively. In the job interview corpus,
the multitask learning improved both of the backchannel pre-
diction and the filler prediction. The result indicates that the
robot’s (interviewer’s) turn-taking behavior (especially at the
points where the turn-taking is ambiguous) is related to the
prediction of backchannels and fillers. In the attentive listen-
ing corpus, prediction of fillers is not conducted because they
are not frequent. The multitask learning improved the recall of
the backchannel prediction in this corpus, too. The result sug-
gests that the robot’s (listener’s) turn-taking behavior is related
to the backchannel prediction, because the listener encourages
the speakers’ utterances by using many backchannels.

6. Conclusions
In this paper, we have proposed a turn-taking prediction model
considering related behaviors of backchannels and fillers. This
model is based on the shared network structure and multitask
learning. It was trained for each role of different dialogue cor-
pora considering the different characteristics of dialogue behav-
iors. The experimental evaluations demonstrated that the pro-
posed model predicted turn-taking better than the single-task
model in the two kinds of corpora.
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