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Abstract

The minimum mean squared error (MMSE) as a conventional
training criterion for deep neural network (DNN) based speech
enhancement has been found many problems. In our recen-
t work, a maximum likelihood (ML) approach to parameter
learning by modeling the prediction error vector as a Gaussian
density was proposed. In this study, our preliminary statistical
analysis reveals the super-Gaussianity and asymmetricity of the
prediction error distribution. Consequently, we adopt the asym-
metric Laplace distribution (ALD) instead of the Gaussian dis-
tribution (GD) to model the prediction error vectors. Then the
new derivation for optimizing the the proposed ML-ALD-DNN
with both DNN and ALD parameters is presented. Moreover,
we can well interpret the asymmetry parameter of ALD as the
balance control between noise reduction and speech preserva-
tion from both formulations and experiments. This implies that
the customization of DNN models for the different noise types
and levels is possible by the setting of the asymmetry parame-
ter. Finally, our ML-ALD-DNN approach achieves better STOI
and SSNR measures over both MMSE-DNN and ML-GD-DNN
approaches.

Index Terms: prediction error modeling, asymmetric Laplace
distribution, maximum likelihood, deep neural network, speech
enhancement

1. Introduction

The main objective of speech enhancement is to improve the
performance of speech communication systems or enhance the
recognition accuracy of automatic speech recognition systems
in noisy environments. Depending on the specific application,
the goal of an enhancement system may be to improve the over-
all quality, increase intelligibility, reduce listener fatigue, or a
combination of these [1]. Considering the various complicated
situation, the enhancement performance in real acoustic envi-
ronments is still unsatisfactory and many problems should be
solved.

Numerous speech enhancement approaches have been pro-
posed to solve the problems. Among them, traditional algo-
rithms include spectral subtraction [2, 3, 4], Wiener filtering
[5, 6], a MMSE estimator [7, 8], an optimally-modified log-
spectral amplitude (OM-LSA) speech estimator [9] and other
statistical-model-based methods [10, 11]. These conventional
methods often fail to track non-stationary noise for real-world
scenarios in unexpected acoustic conditions.

Recently, following the successes in speech recognition
[12], deep learning techniques were also applied in speech en-
hancement. Some deep architectures, such as deep neural net-
work (DNN) [13, 14], deep auto encoder (DAE) [15], recur-
rent neural network (RNN) [16, 17, 18, 19] and convolutional
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Figure 1: The ALD PDF family.

neural network (CNN) [20, 21] were adopted to model the re-
lationship between the noisy signals and the clean speech sig-
nals. From the perspective of machine learning, one key chal-
lenge of deep learning based speech enhancement is the opti-
mization of the complicated and non-convex objective function.
The MMSE between the target features and the predicted fea-
tures is widely used as an optimization criterion for regression
neural network [13]. However, the MMSE-DNN approach is
not robust in adverse acoustic environments, e.g., leading to
the over-smoothing problem and speech information lost in low
signal-to-noise ratio (SNR) conditions [22]. Consequently, bet-
ter objective function designs attracted a considerable amount
of attention recently [16, 17, 21, 23, 24, 25, 26]. Different from
these conventional approaches, our recent work [27] investigat-
ed the maximum likelihood (ML) solution within the probabilis-
tic learning framework to optimize neural network parameters
with the assumption that each dimension of the prediction error
vector at the neural network output follows a zero mean Gaus-
sian density. Experiments demonstrated its superiority of better
generalization capability and less speech distortions especially
in low SNR environments over the MMSE-DNN approach.

In this study, a further statistical analysis reveals the super-
Gaussianity and asymmetricity of the prediction error distri-
bution from MMSE-DNN. Accordingly, we replace the Gaus-
sian distribution (GD) with the asymmetric Laplace distribution
(ALD) [28] to well model the prediction error distribution. The
probability density function (PDF) of the univariate ALD with
zero mean is

_ A sgn ()

p(x|\, k) = —F exp (—x sgn(z) Ak ) , (D
K+ oy
where A\ > 0 is a scale parameter that plays the role of a
variance and ~ is an asymmetry parameter which measures the
skewness and controls the deviation of distribution from sym-
metry as intuitively shown in Figure 1, where k = 1 corre-
sponds to Laplace distribution (LD). Then an alternating two-
step optimization scheme is adopted to update both DNN and
ALD parameters. For speech enhancement, we will interpret the
asymmetry parameter x as the balance control between noise re-
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duction and speech preservation in the following sections. This
implies that the customization of DNN models for the different
noise types and levels is possible by the setting of the asym-
metry parameter. Experiments show that our ML-ALD-DNN
approach achieves better STOI and SSNR measures over both
MMSE-DNN [13] and ML-GD-DNN [27] approaches.

2. The Proposed ML-ALD-DNN Approach

2.1. Statistical analysis of prediction errors
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Figure 2: The kurtosis/skewness of each dimension of the pre-
diction error vector on the cross validation set from the well-
trained MMSE-DNN [13].

As shown in Figure 2, a statistical analysis for the kurto-
sis of the prediction error vector in each dimension reveals the
super-Gaussianity of their distributions based on the fact that all
the kurtosises are larger than 3 (the kurtosis of GD). Moreover,
Figure 2 also illustrates that the skewness for each dimension is
not O (the skewness of GD), implying the distribution of each
dimension is not symmetric. This is the motivation why we
choose ALD to model the prediction errors in this study.

2.2. Derivation for ML-ALD-DNN

In conventional MMSE-DNN, a stochastic gradient descent al-
gorithm is performed in mini-batches with multiple epochs to
minimize the following error function:

N

N

D
(Tnd — nod(Yn.a, W), 2
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where E is the mean squared error, NV is the mini-batch size, D
is the dimension of log-power spectra (LPS) features, W is the
DNN parameter set to be learned. yn, 4, £n,q and x, 4 denote
the d-th dimension of noisy, enhanced and reference normalized
LPS features at sample index n respectively. Then the predic-
tion error e, q could be defined as:

3
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which is treated as a random variable following a univariate zero
mean ALD with an unrestricted scale parameter \q and a known
asymmetry parameter x:

sgn(en,d>) .
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We also assume that the prediction errors in all dimensions are
independently and identically distributed variables. Therefore
we can get the joint distribution of the prediction errors for all
dimensions at sample index n, as represented by the vector e, :
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where A = {A\g|d = 1,2,..., D}. If the reference vector @,
is also a random variable, then we derive the conditional target
distribution (CTD) [29] as a function of the input features y,,
with the parameter set (W, A):
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where v,,q = $gn(Tn,d — Tn,d(Yn,d, W)). Given a set with N
data pairs (Y, X) = {(yn,zs)|n = 1,2,..., N} and assum-

ing that they are drawn independently from the distribution in
Eq. (6), the corresponding likelihood function is:
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where the parameter set (W, A) is to be optimized. It is equiv-
alent to maximizing the log-likelihood as follows:
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2.3. The training procedure of ML-ALD-DNN

We design a procedure to alternatively optimize W and X\ in
mini-batch mode as shown in Algorithm 1. To maximize Eq. (8)
with respect to A, we can derive the update formula:
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Alternatively, we can also maximize Eq. (8) with respect to W,
it is equivalent to minimizing the following expression:
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Then the back-propagation procedure is used to optimize W.
The gradient of W is usually obtained by using the chain rule,
where only the gradient of the objective function with respect to
the network output needs to be modified accordingly as shown
in Eq. (11), whereas all other derivatives are unaffected.

L: in,d(yn,d7 W) > Tn,d
0 i‘n,d(ynd, W) = Tn,d
—Adk Zn,d(Yn,d, W) < Tn,d
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Algorithm 1 Training procedure of ML-ALD-DNN

Step 1: Initialization
Initialize the DNN parameter set W randomly.

Step 2: Alternative optimization in mini-batch mode
Step 2.1: Fix W and update A via Eq. (9)
Step 2.2: Fix A and update W via Eq. (11)

Step 3: Go to Step 2 for the next epoch




Table 1: Performance comparison on the test set (A: Destroyer engine, B: HF channel, C: Volvo, D: Machine gun).

SNR(dB) | Metrics Noise | MMSE-DNN | ML-GD-DNN 07 0% %L_ALDI_DNN (f )1 W 3
A -2.16 -2.26 -2.03 | -242 | -2.67 | -2.58 | 294 | 335 | -3.31

B -3.37 -4.71 -3.01 | -3.81 | 420 | -3.82 | -4.80 | -5.14 | -5.22

SSNR(dB) C 6.92 7.80 8.73 889 | 9.04 | 923 | 931 | 927 | 9.23

5 D 7.13 7.94 9.67 | 10.10 | 10.26 | 10.48 | 10.66 | 10.56 | 10.63
A 59.4 62.3 632 | 629 | 629 | 632 | 636 | 63.7 | 634

STOI (%) B 63.4 63.2 664 | 663 | 652 | 66.8 | 643 | 63.8 | 64.1

C 91.6 92.5 933 | 934 | 935 | 936 | 938 | 93.8 | 938

D 88.7 89.6 90.3 | 903 | 90.7 | 90.2 | 904 | 904 | 90.4

A 2.10 2.50 291 | 282 | 270 | 273 | 247 | 225 | 2.20

B 1.33 1.07 1.93 1.82 1.26 1.40 1.05 | 057 | 047

SSNR(dB) C 9.09 10.31 11.73 | 12.22 | 12.47 | 12.83 | 12.96 | 12.96 | 12.99

5 D 8.94 9.97 1191 | 1252 | 12.73 | 13.15 | 13.26 | 13.29 | 13.35
A 84.3 85.6 859 | 859 | 86.1 86.2 | 86.3 | 86.3 | 86.2

STOI(%) B 84.2 84.3 853 | 855 | 84.7 | 853 84.7 | 84.1 84.4

C 95.0 95.8 96.6 | 96.7 | 96.8 | 96.8 | 969 | 96.9 | 96.9

D 92.8 93.6 944 | 944 | 945 | 943 | 943 | 943 | 943

A 6.47 7.12 797 | 8.09 | 8.11 817 | 799 | 792 | 71.78

B 6.04 6.60 735 | 159 | 721 735 | 736 | 696 | 6.87

SSNR(dB) C 10.65 12.07 14.05 | 14.86 | 15.28 | 15.83 | 1599 | 16.14 | 16.20

15 D 10.52 11.74 13.89 | 14.67 | 1498 | 15.53 | 15.65 | 15.79 | 15.87
A 94.4 95.1 954 | 956 | 957 | 959 | 959 | 96.0 | 959

STOI(%) B 94.0 94.6 94.8 | 95.1 95.0 | 952 | 952 | 95.1 95.2

C 96.6 97.3 98.2 | 983 | 984 | 985 | 985 | 985 | 98.6

D 95.5 96.1 969 | 969 | 97.0 | 97.0 | 969 | 969 | 96.9

3. Experiments
3.1. Experimental conditions

Experiments were conducted on waveforms with 16kHz. The
115 noise types which included 100 noise types [30] and 15
home-made noise types were adopted for training to improve
the robustness to the unseen noise types. The 4620 utterances
from the training set of the TIMIT corpus were corrupted with
the above-mentioned 115 noise types at six levels of SNRs (-
5dB, 0dB, 5dB, 10dB, 15dB and 20dB) to build a 80-hour
training set, consisting of pairs of clean and noisy speech ut-
terances. The 192 utterances from the core test set of TIMIT
database were used to construct the test set for each combina-
tion of noise types and SNR levels. In this experiment, four
unseen noise types (Destroyer engine, HF channel, Volvo, Ma-
chine gun) which were all collected from the NOISEX-92 cor-
pus [31] were adopted for testing.

A short-time Fourier transform was used to compute the
spectra of each overlapping windowed frame. Then 257-
dimensional (D = 257) LPS features were used to train DNNs.
Mean and variance normalization was applied to the input and
reference feature vectors of the DNN. Sigmoid was used as the
activation function of DNN. All DNN configurations were fixed
at three hidden layers, 2048 units for each hidden layer, and 7-
frame input. DNNs were initialized with random weights. The
learning rate for the supervised fine-tuning was set to 0.1 for the
first 10 epochs and declined at a rate of 90% after every epoch in
the next 40 epochs with the mini-batch size of 128 (N = 128).
Original phase of noisy speech was adopted with the enhanced
LPS for the waveform reconstruction. Segmental SNR (SSNR
in dB) [13] for measuring noise reduction and short-time objec-
tive intelligibility (STOI in %) [32] for measuring speech intel-
ligibility were used to evaluate performance.
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3.2. Experimental results and analysis

In spite of the advantage of the ML-GD-DNN approach [27]
in less speech distortions over the conventional MMSE crite-
rion, there is an unavoidable problem that it may introduce
more noises correspondingly. For some noise types (e.g. HF
Channel) which are extremely difficult to remove, our ML-GD-
DNN approach may not bring enhancement performance im-
provements in very low SNR environments (e.g., -5dB) since
less speech distortions can not make up more noise preserva-
tion. However, for other noise types which are easy to remove,
the ML-GD-DNN approach could work across the global SNR
levels. These can be observed in Table 1. But our proposed
ML-ALD-DNN approach can bring further improvements over
ML-GD-DNN and it can even yield significant improvements
when the ML-GD-DNN approach dose not outperform MMSE-
DNN, e.g., the ML-ALD-DNN (x = 1) system improves STOI
by 3.4% for HF channel noise over the MMSE-DNN system at
-5dB where the ML-GD-DNN system does not bring improve-
ments. This implies that our ML-ALD-DNN (x = 1) approach
can remove more noise and lead to less speech distortions com-
pared with the ML-GD-DNN approach. From the comparison
of spectrograms in Figure 3, we can further observe that the pro-
posed ML-ALD-DNN (x = 1) approach achieves less speech
distortions and more noise reduction over the ML-GD-DNN ap-
proach.

Please note that the asymmetry parameter « controls the
noise reduction and speech distortions, i.e., the smaller & is, the
more noise reduction and speech distortions the ML-ALD-DNN
system of k < 1 achieves and the larger « is, the less noise
reduction and speech distortions the ML-ALD-DNN system of
K > 1 achieves. For example in Table 1, ML-ALD-DNN (k =
0.7) yields the best SSNR results for both Destroyer engine and
HF channel noises at -5dB and 5dB SNRs. Also Figure 3 is



Figure 3: Comparison of spectrograms of two 16kHz TIMIT ut-
terances corrupted by Destroyer engine (left column) and HF
channel (right column) noise at 5dB respectively (from top to
bottom): clean speech, noisy speech, ML-GD-DNN enhanced

speech, ML-ALD-DNN (k 1) enhanced speech, ML-ALD-
DNN (k = 0.7) enhanced speech, ML-ALD-DNN (k. = 1.3)
enhanced speech.

a more intuitive illustration. Since noise retention is small in
high SNR environment or for the noise types easy to remove,
the best performance is usually achieved for ML-ALD-DNN
approach when x > 1 in this condition due to its superiority
of less speech distortions. This could be also observed from
Table 1, where the best SSNR and STOI results for Volvo noise
at 15dB are achieved when k = 1.3.

Figure 4 shows the distributions for selected dimensions (1,
60, 150, 240) of the prediction error vector which is calculated
by subtracting the reference feature vector from the enhanced
feature vector using well-trained ML-ALD-DNN on the cross
validation set. We can see that the histograms move right con-
sistently as x becomes larger. This implies that the number of
bins where the enhanced features are smaller than the reference
features becomes less and less as x becomes larger and larger.
Correspondingly, the number of bins where the enhanced fea-
tures are larger than the reference features becomes more and
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Figure 4: The distributions for selected dimensions of the pre-
diction error vector from well-trained ML-ALD-DNN on the
cross validation set.

more as kK becomes larger and larger. This well explains for
the above-mentioned experimental results that the ML-ALD-
DNN system tends to do less harm to speech and preserve more
noise when x becomes large. Another explanation is as fol-
lows. From Eq. (11), please note that the penalty for clipping
off a speech segment is the same as the penalty for clipping off
noise when k = 1. Compared with this, the objective func-
tion assigns higher penalty against noise preservation and lower
penalty against speech removal when £ < 1, and assigns higher
penalty against speech removal and lower penalty against noise
preservation when x > 1. Consequently, x has an effect on
the noise removal and speech distortions and we can potentially
choose the optimal value based on different scenarios.

4. Conclusion

In this paper, we replace GD with ALD to model the prediction
error at the DNN output in ML framework. Statistical analysis
shows the reasonability of the assumption that the prediction er-
ror vector of SE-DNN follows the ALD. Moreover, experiments
demonstrate the superiority of our ML-ALD-DNN approach in
better generalization capability and robustness. The proposed
ML-ALD-DNN can achieve less speech distortions and larger
noise reduction over ML-GD-DNN approach. Furthermore, the
asymmetry parameter of ALD can control the balance between
noise reduction and speech preservation, which implies that the
customization of DNN models for the different noise types and
levels is possible by the setting of the asymmetry parameter.
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