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Abstract

Acoustic model adaptation has been widely used to adapt mod-
els to speakers or environments. For example, appending auxil-
iary features representing speakers such as i-vectors to the input
of a deep neural network (DNN) is an effective way to real-
ize unsupervised adaptation of DNN-hybrid automatic speech
recognition (ASR) systems. Recently, end-to-end (E2E) mod-
els have been proposed as an alternative to conventional DNN-
hybrid ASR systems. E2E models map a speech signal to
a sequence of characters or words using a single neural net-
work, which greatly simplifies the ASR pipeline. However,
adaptation of E2E models has received little attention yet. In
this paper, we investigate auxiliary feature based adaptation for
encoder-decoder E2E models. We employ a recently proposed
sequence summary network to compute auxiliary features in-
stead of i-vectors, as it can be easily integrated into E2E models
and keep the ASR pipeline simple. Indeed, the sequence sum-
mary network allows the auxiliary feature extraction module to
be a part of the computational graph of the E2E model. We
demonstrate that the proposed adaptation scheme consistently
improves recognition performance of three publicly available
recognition tasks.
Index Terms: speech recognition, adaptation, end-to-end, aux-
iliary feature

1. Introduction
Recently end-to-end (E2E) models are becoming a competitive
alternative to conventional deep neural network (DNN) hybrid
automatic speech recognition (ASR) systems. E2E models re-
place the acoustic model, lexicon and language model of a con-
ventional ASR system with a single neural network that directly
maps an input speech signal to an output sequence of charac-
ters or words. E2E systems offer thus the possibility to opti-
mize jointly all components of an ASR system. Moreover, they
greatly simplify the ASR training and decoding pipelines.

There are two major approaches for E2E ASR, connec-
tionist temporal classification (CTC) [1, 2] and attention-based
encoder-decoder models [3, 4]. A combination of these frame-
works has also been proposed recently [5, 6]. These E2E mod-
els have recently achieved state-of-the-art performances for lan-
guages with a large character set such as Japanese or Chinese
[6,7] or tasks with a large amount of training data [7,8]. More-
over, these models open the way to new applications such as
multi-lingual ASR [9, 10] or direct speech-to-speech transla-
tion [11].

E2E models are still relatively novel and many approaches
that have been known to be efficient for legacy ASR systems
have not been sufficiently investigated yet. For example, acous-
tic model adaptation is known to improve performance of legacy
systems. Indeed, models trained with a large amount of training

data are optimized for the average performance over the dis-
tribution of the training data, which may not be optimal for a
specific condition encountered at test time. Therefore adapting
a model to the test conditions is known to improve performance.
Conventional adaptation methods include feature transforma-
tion [12–14], model retraining [15–17] and auxiliary feature
based adaptation [18, 19]. Auxiliary feature based adaptation
in particular has recently received a lot of attention as it is an
effective way to realize speaker or noise adaptation with a very
limited amount of adaptation data.

There have been only a few studies yet on adaptation of
E2E systems [7, 20–22]. These works confirm the potential of
adaptation for E2E systems. However, they usually make the
ASR pipelines more complex as they require either a retraining
step [21, 22] or training a separate model to estimate auxiliary
features [20] or feature transformations [7]. To the best of our
knowledge, auxiliary feature-based speaker adaptation has not
been investigated yet for E2E ASR systems.

In this paper we investigate auxiliary feature based speaker
adaptation for encoder-decoder models. i-vectors may appear as
a natural choice for auxiliary features representing the speakers,
given its success with legacy ASR systems [18, 23]. However,
it is difficult to integrate the i-vector extraction process within
an E2E system as it is hard to express it as a neural network
operation that could be integrated into the computational graph
of the E2E model. Therefore, we employ instead the recently
proposedsequence summary network [24] to compute auxil-
iary features representing speaker characteristics. The sequence
summary network consists of a simple feed-forward neural net-
work, whose output is averaged over the duration of the input
speech signal so that it is mapped to a single vector represent-
ing the speaker. We add the output of the sequence summary
network to the input of the encoder to realize speaker adapta-
tion. The sequence summary network can be easily connected
to the encoder model and thus trained jointly with the encoder-
decoder model. Consequently, the proposed adaptive E2E sys-
tem keeps the simplicity of a standard E2E ASR pipeline. We
call the proposed methodadaptive encoder. We test our pro-
posed approach on three ASR tasks, i.e. Wall Street Jour-
nal (WSJ) [25], TED-LIUM [26] and Corpus of Spontaneous
Japanese (CSJ) [27], and demonstrate consistent performance
improvements. Moreover, visualization of the auxiliary fea-
tures confirms that the sequence summary network can effec-
tively capture speaker information.

The remainder of the paper is organized as follows. We
review related prior works in Section 2. In Section 3, we briefly
describe the baseline E2E system we use in this paper. We then
detail the proposed adaptive encoder in Section 4. Finally, we
present experimental results in Section 5 and conclude the paper
in Section 6.
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2. Related works
There has been much research on model adaptation of conven-
tional DNN-hybrid acoustic models, including model retraining
and its variations [15–17], feature transformation such as fea-
ture space maximum likelihood linear regression (fMLLR) or
vocal tract length normalization (VTLN) [12–14], and auxiliary
feature based adaptation [18,19].

Model retraining is a very effective approach for acoustic
model adaptation when there is enough adaptation data [16,17,
28, 29]. Retraining-based adaptation has been recently investi-
gated for CTC-based E2E systems to adapt a multilingual ASR
system to a target language [21], and for speaker adaptation
of multi-microphone encoder-decoder models [22]. Although
these works proved that retraining was effective for E2E models
as well, the additional retraining step they involve may arguably
make the ASR pipeline more complex.

Feature transformations, such as fMLLR [13] or
VTLN [12], are also very effective techniques for speaker
adaptation when the amount of adaptation data per speaker is
relatively large [14]. VTLN has also been shown to be effective
for CTC-based E2E systems [7]. However, fMLLR or VTLN
exploit a separately trained Gaussian mixture model (GMM)
acoustic model to compute the feature transformation. This
makes the training and decoding pipelines complex. Moreover,
the fMLLR/VTLN computations cannot be easily expressed
with neural network components, and therefore their model
parameters cannot be learned with error backpropagation,
making them difficult to optimize within an E2E framework.

Much research has been performed on auxiliary feature
based adaptation, proposing different auxiliary features [18,19,
30] and model architectures [18, 31, 32]. Auxiliary feature-
based adaptation has also been proposed recently for CTC-
based multilingual E2E ASR system using an auxiliary feature
representing a target language [20]. However, auxiliary feature-
based speaker adaptation has not been investigated yet for E2E
models. The most widely used approach for speaker adapta-
tion consists of adding i-vectors, which represent the speaker
characteristics, to the input of an acoustic model [18]. Such
an approach can realize rapid unsupervised adaptation. How-
ever, the computation of the i-vector requires a separate GMM
model. Therefore, as for fMLLR/VTLN the i-vector extraction
process is hard to integrate within an E2E framework. In con-
trast, sequence summary network has been proposed as an al-
ternative to i-vectors that can be jointly trained with an acoustic
model DNN [24]. For hybrid systems, sequence summary net-
work approach achieved comparable performance to i-vectors
for speaker adaptation. In addition, the sequence summary net-
work has the advantage that it can be easily integrated into an
E2E model, keeping the ASR pipeline simple and allowing the
E2E training of the auxiliary feature extraction module. This
work is the first study on sequence summary network based
adaptation for E2E systems.

3. Attention-based Encoder-decoder ASR
Our baseline E2E model consists of an hybrid CTC/Attention
E2E model described in [6] and shown in Fig. 1. In particular,
we use the implementation provided in [33]. To simplify the
description, we limit the discussion to the encoder-decoder part
of the model since it is the only component that we modified.
However, note that all experiments were performed using the
CTC/Attention hybrid training and decoding scheme.

An attention-based encoder-decoder recognition system re-
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Figure 1: Schematic diagram of a baseline encoder-decoder
model with attention. Refer to [6] for details about the model
and the CTC decoding block.

ceives aT -length input sequence of speech featuresX = {xt ∈
RD, t = 1, . . . , T}, and outputs aL-length sequence of char-
actersW = {wl ∈ U, l = 1, . . . , L}, whereU is the set of
distinct characters. The posterior probability of the output se-
quence given the observed speech sequence,p(W |X) is ob-
tained as,

p(W |X) =
L∏

l=1

p(wl|w1, . . . , wl−1, X), (1)

where p(wl|w1, . . . , wl−1, X) is obtained from an encoder-
decoder model with attention as described below.

3.1. Encoder

The encoder consists of a neural network that processes all
frames of the input sequence and outputs an intermediate repre-
sentation of the sequenceH = {ht, t = 1, . . . , T},

ht = encoder(xt), (2)

where here encoder(·) consists of a VGG (very deep convolu-
tional neural network (CNN)) followed by several bidirectional
long short-term memory (BLSTM) layers. Note that in prac-
tice, the output of the encoder is usually subsampled to reduce
the computational complexity [34].

3.2. Attention mechanism

The attention mechanism computes a context vectorcl to pre-
dict the characterwl of the output sequence as,

cl =
T∑

t=1

al,tht (3)

al,t = attention(ht,ql, {al−1,t}Tt=1), (4)

where{al,t}Tt=1 are the attention weights associated with the
lth output, andql is an internal state of the decoder recurrent
neural network (RNN). We use the location attention mecha-
nism described [34].

3.3. Decoder

Finally, the decoder computes the posterior probability
p(wl|w1, . . . , wl−1, X) as,

p(wl|w1, . . . , wl−1, X) = decoder(cl,ql, wl−1), (5)

where decoder(·) consists of an LSTM layer followed by a fully
connected layer and a softmax function. The encoder-decoder
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Figure 2:Schematic diagram of the proposed adaptive encoder
with the sequence summary network for the auxiliary feature
computation. FC stands for fully connected layer.

model can model the conditional relation over all input fea-
tures and past predictions through the state of the decoder RNN
ql. Moreover, all operations can be expressed in as a single
neural network, which enables E2E training of all components.
However, the current encoder-decoder scheme does not perform
speaker adaptation.

4. Proposed adaptive encoder
4.1. Auxiliary input feature based adaptation

Figure 2 is a schematic diagram of the proposed adaptive en-
coder. Adaptation is realized by adding to the input of the en-
coder a context dependent bias term derived from the auxiliary
feature,s ∈ RV as,

x̂t = xt +Ps, (6)

wherex̂t ∈ RD is an adapted input feature andP ∈ RD×V is a
projection matrix used to map the auxiliary features of sizeV
to the dimension,D, of the input featurext. Note that adding
such a bias is essentially equivalent to concatenating the auxil-
iary feature to the input of the encoder. Indeed, assuming a fully
connected input layer withM hidden units and a transformation
matrix,W ∈ RM×(D+V ), we have,

W

[
xt

s

]
=

[
Wx Ws

] [xt

s

]
= Wx(x+W−1

x Ws︸ ︷︷ ︸
,P

s). (7)

Therefore, instead of learning the transformation matrix asso-
ciated with the auxiliary featuresWs ∈ RM×V , we learn
P , W−1

x Ws ∈ RD×V directly. This implementation has
the advantage of keeping the configuration of the encoder un-
changed, and the implementation for CNN input layers simple.

4.2. Sequence summary network

It is possible to use various types of auxiliary features to rep-
resent the context. For example, i-vectors, speaker bottleneck
features or noise estimates have been used. Here, to keep the
possibility of achieving E2E training, we employ the recently

Table 1:Details of the corpora used for the experiments.

WSJ

Training set 81 h (283 speakers)
Dev set 1.1 h (5 females, 5 males)
Eval set 0.7 h (3 females, 5 males)
Nb of characters 50

TED-LIUM

Training set 210 h (5079 talks)
Dev set 1.6 h (1 female, 7 males)
Eval set 2.6 h (2 females, 8 males)
Nb of characters 32

CSJ

Training set 513 h (3176 lectures)
Test set 1 1.8 h (10 males)
Test set 2 1.9 h (5 females, 5 males)
Test set 3 1.3 h (5 females, 5 males)
Nb of characters 3260

proposed sequence summary network to compute the auxiliary
featuress.

With the sequence summary network framework, an auxil-
iary features representing the context of the utterance is com-
puted as,

s =
1

T

T∑

t=1

g(xt), (8)

whereg(·) is a neural network that consists of several fully con-
nected (FC) layers. The time averaging operation reduces the
input sequence to a single vector representing its context. In the
following experiments, we expect that the context information
captured by the auxiliary feature represents speaker informa-
tion, since we focus on clean speech ASR where the main factor
of context variability comes from the speaker characteristics.

5. Experiments
We performed experiments to confirm the effectiveness of the
proposed adaptive encoder on three publicly available corpora,
two English language speech corpora WSJ, TED-LIUM and a
Japanese corpora, CSJ. The characteristics of the corpora are
summarized in Table 1.

5.1. Experimental settings

We used the same model configuration in all three experiments.
All parameters were chosen according to the ESPnet recipes,
and interested readers should refer to [33, 35] for more details.
The baseline E2E system consists of an hybrid CTC/attention
system [6]. The input features consists of 80 log mel filter-
bank coefficients with pitch on each frame. The encoder con-
sists of the two initial blocks of a VGG network followed by six
BLSTM layers with 320 units. Down-sampling was performed
to reduce the length of the encoded sequence by a factor of 4.
We used location based attention mechanism [34]. The decoder
consists of a single LSTM layer with 300 units followed by a
linear layer with a number of output units corresponding to the
number of distinct characters of each task (see Table 1).

The configuration of the sequence summary network is sim-
ilar to that proposed in [24], i.e. we used three fully connected
layers of 512 units with hyperbolic tangent activation functions,
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Table 2: CER [%] for the baseline and proposed adaptive en-
coder (adapt. enc.), for WSJ, TED-LIUM and CSJ tasks.

WSJ TED-LIUM CSJ
dev eval dev eval test1 test2 test3

Baseline 7.4 5.5 9.9 10.0 9.8 7.1 7.9
Adapt. enc. 7.1 5.1 9.7 9.7 9.4 6.5 7.2

Table 3:WER [%] for the baseline and proposed adaptive en-
coder (adapt. enc.), for WSJ and TED-LIUM tasks with and
without RNNLM score combination during decoding.

WSJ TED-LIUM
dev eval dev eval

Baseline 21.8 17.3 22.5 22.0
Adapt. enc. 21.3 16.3 21.7 21.1

Baseline +RNNLM 13.2 10.5 - -
Adapt. enc. +RNNLM 13.2 8.7 - -

except for the last layer that had linear activation and 100 output
units.

All model parameters were randomly initialized. In par-
ticular, we did not employ any pre-training technique for the
sequence summary network. All models were optimized using
the hybrid CTC/attention loss with adadelta for up to 15 epochs.

We used beam search decoding combining the CTC and
encoder-decoder outputs, with a beam size of 20. All param-
eters were tuned on the baseline system and kept unchanged
for the proposed adaptive encoder approach. We evaluated all
models in terms of character error rate (CER) and word error
rate (WER) for the English tasks.

5.2. Results

Table 2 shows the CER for the three tasks using the baseline
E2E and the proposed adaptive encoder. The proposed method
achieves consistent recognition gains for all test sets. The rela-
tive CER improvement ranges from 2 % for the dev set of TED-
LIUM to up to more than 8 % for CSJ. These results confirm
the potential of the method for speaker adaptation.

English tasks are usually evaluated in terms of WER. Ta-
ble 3 shows the WER for the WSJ and TED-LIUM tasks. We
observed similar relative improvement as in Table 2. We also
provide results with RNN language model (LM) score combi-
nation during decoding [36] for WSJ (Due to time constraint we
could not provide these results for TED-LIUM). The RNNLM
consists of a character-based two-layer LSTM LM trained on
the WSJ language model training set, which is larger than
the speech training set. When using decoding with RNNLM
score combination, the proposed method achieved similar per-
formance than the baseline for the dev set, however perfor-
mance improved significantly for the eval set.

Encoder-decoder models are especially effective for tasks
with a large amount of training data or large character set. Per-
formance of encoder-decoder models for English tasks with
limited amount of training data such as WSJ and TED-LIUM
are still below that of hybrid models. We plan to evaluate our
proposed method with larger English data sets in future work.
Note that the performance of our baseline on CSJ, which has
a large character set, is comparable or slightly superior to con-
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Figure 3:tSNE plots of the auxiliary features obtained from the
sequence summary network for the utterances of the eval set
of the TED-LIUM corpus. The colors represent the different
speakers. (Best in colors)

ventional hybrid system and representative of the state-of-the
art for that task [6]. The relatively large performance improve-
ment observed for CSJ appears thus particularly promising.

5.3. Discussion

We confirmed that the sequence summary network extracts
speaker information by looking at the auxiliary features (s in
Eq. (8)) for the different utterances of the eval set of the TED-
LIUM corpus. Figure 3 plots a 2D representation of the aux-
iliary features obtained by reducing the dimensionality using
tSNE [37]. Note that similar plots were observed for the other
tasks but were omitted for space consideration. We observe
clearly that auxiliary features corresponding to the same speaker
are clustered together, which confirms that the sequence sum-
mary network learns to extract speaker information.

In this paper, we employed an encoder that includes a
BLSTM layer, which can potentially capture long context such
as speaker information. One could argue that since both the
sequence summary network and the encoder see the same infor-
mation, there is no need for the adaptation module. However,
the sequence summary network performs an averaging over all
input features and is thus specially designed to capture the over-
all context of the input signal, in this case the speaker infor-
mation. The performance improvement observed in the experi-
ments confirms the benefit of using such a dedicated module to
capture the overall context information and perform adaptation.

6. Conclusions

This paper demonstrates the effectiveness of auxiliary feature-
based adaptation for end-to-end ASR systems. We proposed
using a sequence summary network to learn speaker representa-
tions within an end-to-end ASR framework. We confirmed the
effectiveness of the proposed method with three ASR corpora
showing consistent gains. Especially, we could achieve large
performance improvement over a strong baseline recognizer for
Japanese.

Future work will include investigations with larger En-
glish corpora, other approaches for exploiting the auxiliary fea-
tures [31, 32] as well as integration into an online decoding
scheme [38].
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