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Abstract
We present novel neural network based language models that
can correct automatic speech recognition (ASR) errors by using
speech recognizer output as a context. These models, called
neural error corrective language models (NECLMs), utilizes
ASR hypotheses of a target utterance as a context for estimat-
ing the generative probability of words. NECLMs are expressed
as conditional generative models composed of an encoder net-
work and a decoder network. In the models, the encoder net-
work constructs context vectors from N-best lists and ASR con-
fidence scores generated in a speech recognizer. The decoder
network rescores recognition hypotheses by computing a gener-
ative probability of words using the context vectors so as to cor-
rect ASR errors. We evaluate the proposed models in Japanese
lecture ASR tasks. Experimental results show that NECLM
achieve better ASR performance than a state-of-the-art ASR
system that incorporate a convolutional neural network acoustic
model and a long short-term memory recurrent neural network
language model.
Index Terms: automatic speech recognition, language mod-
els, speech recognition error correction, conditional generative
models

1. Introduction
Language models are one of the essential components in auto-
matic speech recognition (ASR) systems. Their role is to esti-
mate generative probabilities of output strings generated from
acoustic models or other speech recognizers. In state-of-the-art
ASR systems, two language models are often introduced into
two-pass decoding. In the first decoding pass, hypotheses are
generated using n-gram language models which are compat-
ible with decoding algorithms. In the second decoding pass,
neural network based language models (NNLMs) [1, 2] are ap-
plied for rescoring the hypotheses. It is known that NNLMs im-
prove ASR performance by combining with n-gram language
models. Among NNLMs, recurrent neural network based lan-
guage models (RNNLMs) [3, 4] have been shown to signif-
icantly improve ASR performance because they can capture
longer-term contexts of word sequences. Furthermore, long
short-term memory RNNLMs (LSTMLMs) [5] can further en-
hance ASR performance due to their ability to help reduce the
vanishing gradient problem [6].

Most language models including n-grams and RNNLMs
are usually built on the basis of correct word sequences such
as manual transcriptions. On the other hand, language models
that utilize ASR hypotheses have also been proposed to take ac-
count of ASR error tendencies. Discriminative language mod-
els (DLMs) [7–10], which train functions with a discriminative
criterion, are the most famous language models for capturing
ASR error tendencies. In addition, the discriminative criterion
is introduced into NNLMs [11, 12]. The discriminative crite-
rion is effective for reducing ASR errors. However, previous

language models cannot consider how errors tend to occur in a
target utterance because they do not utilize ASR hypotheses for
computing generative probabilities of words at all.

This paper proposes neural error corrective language mod-
els (NECLMs), which directly utilize ASR hypotheses as con-
texts for estimating generative probabilities of words. The
NECLMs assume that ASR hypotheses have already been gen-
erated by a speech recognizer, while previous LMs do not need
them. In order to handle the ASR hypotheses, the NECLMs
are composed as conditional generative models using an en-
coder network and a decoder network. In the encoder network,
ASR hypotheses of a target utterance are encoded to continuous
representations. The decoder network can compute generative
probabilities of a word sequence by leveraging the continuous
representations. Therefore, the NECLMs can directly reduce
ASR errors of the target utterance. In order to accurately cap-
ture the ASR error tendencies of the target utterance, we present
several modeling methods that utilize multiple ASR hypotheses
and confidence measures obtained by a speech recognizer. We
also present several training methods to reduce a lot of ASR
errors.

We evaluate NECLMs on a Japanese ASR lecture task
of the Corpus of Spontaneous Japanese (CSJ) [13]. The re-
sults verify that NECLMs provide better ASR performance than
state-of-the-art ASR setups.

This paper is organized as follows. Section 2 describes re-
lated work. Section 3 defines error corrective language mod-
eling. Section 4 details NECLMs. Experiments are shown in
Section 5 and Section 6 concludes the paper with a summary
and a mention of future work.

2. Related Work
2.1. End-to-End ASR

Our proposed models are related to an end-to-end approach for
ASR [14–18]. A sequence-to-sequence based end-to-end ASR
system was reported to outperform a connectionist temporal
classification based system. Whereas the sequence-to-sequence
based end-to-end model for ASR is a conditional generative
model for input speech, our proposed models are conditional
generative models of ASR result. Speech recognizers need to
exist before NECLMs can correct errors. Unlike the end-to-end
ASR, NECLMs capture speech recognition error tendencies di-
rectly. In the work reported in this paper, conventional speech
recognition is conducted before using NECLMs. It is possible
that the end-to-end ASR can be used instead of a conventional
speech recognizer.

2.2. Unsupervised Language Model Adaptation

NECLMs are similar to unsupervised language model adapta-
tion methods [19], which calculate the generative probability
of words by using speech recognition results [20–22]. Un-
supervised language model adaptation methods utilize correct
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word sequence, but not ASR hypotheses including ASR er-
rors. Unlike unsupervised language model adaptation methods,
NECLMs utilize ASR hypotheses to directly model ASR errors.

2.3. Neural Post Editing for Machine Translation

In machine translation, neural network based post editing (NPE)
methods have been proposed and shown to significantly im-
prove machine translation in both objective and subjective eval-
uations [23,24]. An NPE model is trained with pairs of a trans-
lation result and its correct sentence. Pal et al. [23] define NPE
as a post-processing module. Our proposed models for ASR
are also assumed to be post-processing modules, but we formu-
late them as language models that utilize ASR hypotheses as a
context.

3. Error Corrective Language Models
This section details the definition of error corrective language
models (ECLMs). The ECLMs are language models that use
speech recognizer output as a context for estimating genera-
tive probabilities of words. Given speech recognizer output
H(x; θ) with input speech x, the generative probability of an
input word sequence w = {w1, w2, · · · , wi, · · · , wI} is writ-
ten as

P (w|x) = P (w|H(x; θ);Λ), (1)

where θ denotes parameters in a speech recognizer and Λ rep-
resents parameters of ECLMs. The speech recognizer includes
acoustic models and typical language models such as n-grams
and LSTMLMs. Given ASR hypotheses as an N-best list,
H(x; θ) can be written as

H(x; θ) = {(r1, P (r1), P (x|r1)), · · · ,
(rn, P (rn), P (x|rn)), · · · , (rN , P (rN ), P (x|rN ))}, (2)

where rn is the hypothesis that has the n-th highest ASR score
in an N-best list, P ((x|rn))) is the generative probability of
x computed by the acoustic models and P (rn) is the genera-
tive probability of rn computed by the typical language mod-
els. Unlike typical language models, ECLMs are trained from
both outputs of a speech recognizer and corresponding tran-
scriptions. Thus, Λ are trained to correct ASR errors that oc-
curred by θ.

ECLMs are utilized for rescoring ASR hypotheses. In the
rescoring, the ASR score calculated by the speech recognizer
is linearly interpolated with log generative probability obtained
by an ECLM. The 1-best ASR result ŵ is determined by

ŵ = arg max
w

{β logP (w|H(x; θ);Λ)

+ (1− β) logP (w|x; θ)}, (3)

where P (w|x; θ) denotes the ASR score calculated by the
speech recognizer and β is the interpolation weight of the
ECLM.

4. Neural Error Corrective
Language Models

4.1. Model Definition

NECLMs are a type of ECLM based on a sequence-to-sequence
model. Given sequences X and Y , the sequence-to-sequence

model can calculate the conditional generative probability of
P (X|Y ). NECLMs calculate the conditional generative proba-
bility P (w|H(x; θ);Λ) to use this ability. In the NECLMs, the
hypotheses used to construct contexts are fixed. Then, the gen-
erative probabilities of each hypothesis in the N-best list gen-
erated from the speech recognizer are estimated in the decoder.
We can select hypotheses from the N-best list to construct the
encoder context. In ths study, we examine both single and mul-
tiple hypotheses scoring.

4.1.1. Single Hypothesis Based NECLMs

In single hypothesis based NECLMs, only a single hypoth-
esis is utilized to construct the contexts. In this case,
P (w|H(x; θ);Λ) is formulated as:

P (w|H(x; θ);Λ) = P (w|rn;Λ). (4)

We examine two strategies in this study. One is to use the hy-
pothesis with the highest ASR score (single-hyp. highest ASR).
The other is to use the hypothesis with the lowest ASR score
(single-hyp. lowest ASR).

4.1.2. Multiple Hypotheses Based NECLMs

Multiple hypotheses based NECLMs utilize the top K hypothe-
ses in the N-best result. To this end, we utilize a posterior prob-
ability of rn given x for weighting each hypothesis. If we as-
sume that each hypothesis has the same posterior probability,
P (w|H(x; θ);Λ) can be written as

P (w|H(x; θ);Λ) =
K∑

k=1

P (rk|x)P (w|rk;Λ), (5)

≈ 1

K

K∑

k=1

P (w|rk;Λ), (6)

where K represents the number of hypotheses used to construct
encoder contexts in scoring. We call this scoring multi-hyp.
average. On the other hand, if we assume that the posterior
probabilities correspond to the confidence scores of the speech
recognizer, P (w|H(x; θ);Λ) can be formulated as

P (w|H(x; θ);Λ) =
K∑

k=1

P (rk|x)P (w|rk;Λ), (7)

≈
K∑

k=1

P (x|rk)P (rk)∑N
l=1 P (x|rl)P (rl)

P (w|rk;Λ).

(8)

We call this scoring multi-hyp. confidence.

4.2. Neural Network Based Modeling

We next explain how to calculate P (w|r;Λ) in both single hy-
pothesis and multiple hypotheses scoring. NECLMs estimate
generative probability P (w|r;Λ) by a neural network. Fig-
ure 1 illustrates an example of NECLM whose encoder context
is single ASR hypothesis. We use a bi-directional LSTM (bi-
LSTM) with attention mechanism [25, 26] as an encoder and
a uni-directional LSTM (uni-LSTM) as a decoder. Given an
ASR hypothesis r and a scoring target word sequence w =
{w1, w2, · · · , wi, · · · , wI}, the conditional generative proba-
bility is calculated as

P (w|r;Λ) =
I∏

i=1

P (wi|wi−1, si−1, s̄i;Λ), (9)
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Figure 1: Neural error corrective language model with single
hypothesis.

where si−1 denotes a hidden state in the LSTM decoder, s̄i is
the context vector of an ASR hypothesis in the encoder and Λ is
the trainable parameters in the NECLM. In the encoder, a word
in an ASR hypothesis rj is mapped to 1-of-K representation and
embedded in distributed representation by affine transformation
as

ej = EMBED(rj , λe), (10)

where EMBED(·) is the function that converts from a word to
a distributed representation and λe is the trainable parameter.
Hidden states in forward and backward LSTMs are calculated
as

−→
h j =

−−→
LSTM(ej ,

−→
h j−1, λlf ), (11)

←−
h j =

←−−
LSTM(ej ,

←−
h j+1, λlb), (12)

where
−−→
LSTM(·) and

←−−
LSTM(·) represent LSTM functions of for-

ward and backward LSTMs in the encoder and λlf and λlb are
the trainable parameters. The encoder hidden state hj is calcu-
lated by concatenating

−→
h j and

←−
h j as

hj = [
−→
h⊤

j ,
←−
h⊤

j ]
⊤. (13)

The context vector s̄i is constructed in each time-step when es-
timating generative word probabilities in the decoder as

s̄i =
J∑

j=1

αj,ihj , (14)

where αj,i is calculated as

αj,i =
exp(si · hj)∑J
l=1 exp(si · hl)

, (15)

where si is the hidden state in the decoder and “·” indicates a
dot product function. In the decoder, distributed representation
di−1 is calculated by a different weight matrix from the encoder
as

di−1 = EMBED(wi−1, λd), (16)

where λd is the trainable parameter. The hidden state in the
decoder is calculated by the LSTM function as

si = LSTM([di−1, s̄i−1], si−1, λs), (17)

Table 1: Datasets for NECLMs

Data # of words Hours
Training 5,209,203 545.41
Development 517,480 54.21
Test 64,166 6.42

where λs is the trainable parameter. Then, oj is calculated by
concatenating the decoder hidden state with a context vector as
and a hyperbolic tangent function as

oi = tanh([si, s̄i]
⊤, λt), (18)

where si is a hidden state in the decoder, s̄i denotes a context
vector generated from the ASR hypothesis and λt is the train-
able parameter. Finally, the decoder estimates the word proba-
bility in the target hypothesis with a conditional probability as

P (wi|wi−1, si−1, s̄i,Λ) = SOFTMAX(oj , λo). (19)

where λo is the trainable parameter. By repeating the cal-
culation, the NECLMs can estimate generative probability
P (w|r;Λ).

4.3. Training

Model parameters in the NECLMs are updated to maximize the
conditional generative probability of manual transcription in the
decoder when giving an ASR hypothesis as a context in the en-
coder. Thus, the model parameters are optimized by minimizing
cross entropy loss function:

L(Λ) = −
∑

(r′,w′)∈D
logP (w′|r′;Λ), (20)

where D is pairs of ASR results and manual transcriptions.
In training the NECLMs with all hypotheses in an N-best list,
training data D is described as

D = {(r1,w1), (r2,w2), · · · , (rN ,wN )} . (21)

For encoder context, we investigate two hypotheses selected
from N-best list in training. One has the highest ASR score
(high ASR) and the other has the highest WER (high WER). We
expect the NECLMs will be able to model various ASR errors
by using high WER.

5. Experiments
5.1. Experimental Setups

We evaluated the NECLMs with a Japanese lecture ASR task of
the CSJ. Datasets for them are shown in Table 1. The vocabu-
lary size of their training data was 78,688 words. The training
set for a first pass N-gram language model and an LSTMLM
was 6,100,688 words in CSJ lectures, which had a vocabulary
size of 78,964 words. An acoustic model was trained with ap-
proximately 1,000 hours of speech including the CSJ and other
private data. We evaluated the proposed models by averaging
WERs over three standard CSJ evaluation sets.

The baseline system uses a convolutional neural network
based acoustic model. The language model in the first pass
decoding is a Kneser-Ney smoothed 3-gram model [27]. The
LSTMLM has 2 layers and 512 units in each hidden layer. The
speech recognizer includes a weighted finite state transducer
based decoder [28].
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Table 2: Encoder context hypotheses and WERs on evaluation
sets

Encoder context hypotheses
training scoring %WER
high ASR single-hyp. high ASR 20.80

single-hyp. low ASR 21.57
multi-hyp. average 20.70
multi-hyp. confidence 20.76

high WER single-hyp. high ASR 20.63
single-hyp. low ASR 21.38
multi-hyp. average 20.43
multi-hyp. confidence 20.43

No rescoring 21.96
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Figure 2: WERs for different numbers of hypotheses K in cal-
culating generative probability for each calculating method

An NECLM consists of an encoder network and a decoder
network. The encoder network is bi-LSTM with an attention
mechanism, which has a 2-layer LSTM with 512 units per layer
in the forward and backward directions. The decoder network
has a 2-layer uni-LSTM with 512 units in each layer. Out-
put size corresponds to vocabulary size. In NECLM training,
development data was used for scheduling the learning rate.
The learning rate for all NECLMs in these experiments was set
to 0.1 initially and reduced when cross entropy loss was not
reduced below that of the previous epoch. The training was
stopped when the learning rate reached 0.01. The dropout ratio
in each LSTM layer was set to 0.3.

We used the 100-best list generated from each utterance to
train NECLMs and evaluate NECLMs and LSTMLMs. The
NECLM score was interpolated with the ASR score in accor-
dance with Eq. (3). The interpolation weight β was changed
from 0 to 1 in 0.1 step. When using an LSTMLM score, the
score is interpolated with the n-gram language model score.

5.2. Results

5.2.1. Comparison with Context Hypotheses

We investigated hypotheses for encoder contexts in NECLMs to
effectively model ASR errors. Each hypothesis pair was com-
pared by using WER over the evaluation set.

For the context hypotheses, a single hypothesis and mul-
tiple hypotheses were selected in scoring. We use the highest
ASR score hypothesis (single-hyp. high ASR) and the lowest

Table 3: WERs in different systems un-rescored and rescored by
NECLM

Model %WER
baseline 21.96

+ NECLM 20.43
baseline + LSTMLM 20.19

+ NECLM 19.82

100-best oracle 14.28

ASR score (single-hyp. low ASR) hypothesis as a single hy-
pothesis. When scoring with multiple hypotheses, the genera-
tive probability was calculated in NECLMs in accordance with
Eq.(6) as multi-hyp. average and Eq. (8) as multi-hyp. con-
fidence. For the training, we utilized the highest ASR score
hypothesis (high ASR) and the highest WER hypothesis(high
WER).

Table 2 shows the WER performance when using differ-
ent hypotheses in the encoder as a context. All combinations
of context hypotheses in training and scoring of NECLMs pro-
vided WER improvement over the baseline system. Training
with high WER hypothesis showed lower WER than training
with high ASR hypothesis for the same evaluation context. It is
assumed that high WER hypotheses enables NECLMs to cap-
ture more errors of various types than high ASR hypotheses
training. The evaluation with low ASR hypothesis provided less
improvement from high ASR hypothesis in evaluation encoder
context. In the scoring with multiple hypotheses, averaging
scoring as well as confidence scoring showed the best WER
20.43%.

Figure 2 shows WERs for different numbers of hypotheses
K when calculating generative probability for each calculating
method. Training with low ASR or high ASR hypothesis and
scoring with averaging score calculation shows the lowest WER
for all K. As can be seen in the figure, using K = 10-20 is
better than using K = 30-100.

5.2.2. Evaluation with LSTMLM.

Table 3 shows WERs in different systems un-rescored and
rescored by an NECLM. In the table, “100-best oracle” repre-
sents the lowest WER in a 100-best list. This is the lower-bound
of WER in N-best list rescoring. With NECLM rescoring,
the WER for the baseline system was reduced by 6.97%. We
also achieved 1.83% relative WER reduction by the LSTMLM
rescoring system. This indicates that the properties of the
NECLM differed from those of the LSTMLM.

6. Conclusions and Future Work
In this paper, we proposed NECLMs, which directly utilizes
ASR results as contexts to estimate generative probabilities of
words. We defined ECLMs and formulated NECLMs as condi-
tional generative models with neural networks. To model ASR
errors effectively, we investigated hypotheses to use construct
context in the encoder. In experiments we conducted, lower
WER than in other methods was achieved by NECLMs trained
by multiple hypotheses with the highest WER that were selected
from an N-best list. Specifically, we achieved the relative WER
reduction of 1.83% with respect to a system including a convo-
lutional neural network acoustic model and an LSTMLM. Fu-
ture work includes comparing our proposed models with dis-
criminative language models and extending the encoder context
to use multiple hypotheses with a confusion network [29].
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