
Latent Factor Analysis of Deep Bottleneck Features for Speaker Verification
with Random Digit Strings

Ziqiang Shi, Huibin Lin, Liu Liu, Rujie Liu

Fujitsu Research and Development Center
shiziqiang@cn.fujitsu.com

Abstract
Speaker verification with prompted random digit strings has
been a challenging task due to very short test utterance.
This work investigates how to combine methods from deep
bottleneck features (DBF) and latent factor analysis (LFA) to
result in a new state-of-the-art approach for such task. In order
to provide a wider temporal context, a stacked DBF is extracted
to replace the traditional MFCC feature in the derivation
of the supervector representations and leads to a significant
improvement for the speaker verification. The LFA is used to
model these stacked DBFs in both digit and utterance scales.
Based on this learned LFA model, two kinds of supervector
representations are extracted for utterance and local digits
respectively. Since the strengths of DBF and LFA appear
complementary, the combination significantly outperforms
either of its components. Experiments have been conducted on
the public RSR2015 part III data corpus, the results showed
that our approach can achieve 1.40% EER and 1.55% EER on
male and female respectively.
Index Terms: latent factor analysis, speaker verification,
bottleneck feature

1. Introduction
As opposed to text-independent speaker verification, where the
speech content is unconstrained, text-dependent speaker
verification systems are more favorable for security
applications since they showed higher accuracy on short-
duration sessions [1, 2]. Text dependent speaker verification
has wide applications in many areas, including smart human-
machine interface, security, forensic, telephone banking, and
so on.

Typical text-dependent speaker verification uses fixed
phrase for each user and hence, enrollment and test phrases are
matched. For this scenario it is possible that utterance from a
user can be recorded beforehand by an imposter and then play
it back. This spoofing or attack can be avoided to a certain
extent by sharing the same phonetic content but with different
context between training and test utterances, for example
the user is prompted to utter a digit strings randomly chosen
by the system. In this anti-spoofing scenario, the speaker is
usually prompted to utter all of 10 digits several times during
enrollment and test utterances contain a subset of the digits.
This work is tested on part III of the RSR2015 database [1]
which is designed to evaluate the ability of a system to deal
with this kind of scenario.

Previous methods regarding speaker verification with
random prompt digit strings can be grouped into two
categories. The first category is based on the traditional
state-of-the-art Gaussian mixture model represented universal
background model (GMM-UBM) and joint factor analysis
(JFA) approach: Larcher et al. [1] use a Hidden Markov Model

(HMM) system termed HiLAM to model each speaker and
each state corresponding one of the 10 digits; Stafylakis et
al. [3] propose to use JFA to extract the global utterance vector
and the local digit vector, which are fed into a joint density
backend.

In the second category, deep models are ported to speaker
verification: deep neural network (DNN) is used to estimate the
frame posterior probabilities [4]; DNN as a feature extractor for
the utterance level representation [5]; Matejka et al. [6] have
shown that using bottleneck DNN features (BN) concatenated
to other acoustic features outperformed the DNN method for
text-dependent speaker verification; end-to-end deep learning
jointly optimizes the speaker representations and models [2];
multi-task deep learning jointly learns both speaker identity and
text information [7].

This paper is based on the work of Lee et al. [8], in
which deep bottleneck features showed a significant advantage
over traditional Mel-frequency cepstral coefficients (MFCC) or
shifted-delta-cepstral (SDC) features in language recognition
and the work of Stafylakis et al. [3] in which the state-of-the-art
JFA approach [9] is employed to extract features which are fed
into a joint density backend (JDB) to estimate the log likelihood
ratios. We extend and combine these two effective approaches
to a new state-of-the-art method for speaker verification with
random prompted digit string.

Our contribution is two-fold. Firstly we use the stacked
deep bottleneck feature (stack DBF) extracted by using a
DNN to replace the traditional MFCC feature to extract the
supervector representations [3], which leads to a significant
improvement for the speaker verification performance in
RSR2015 part III. Secondly multi-scale features including
both utterance and digit level supervector representations are
employed as frontend and score level calibration and FoCal
fusion [10] were further employed to combine subsystem
scores into final result.

The remainder of this paper is organized as follows:
Section 2 describes the DBF-LFA/JDB approach; The detail
experimental results and comparisons are presented in Section
3 and the whole work is summarized in Section 4.

2. Model description
In this section, we describe each component of the approach
including stacked deep bottleneck feature, latent factor analysis
of stacked DBF and joint density backend of global and local
representations.

2.1. Stacked deep bottleneck feature

Performance of speaker verification systems are typically
improved by developing robust features which are able to
capture relevant speaker characteristics while suppressing
channel and session noise. One such feature is the deep
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bottleneck feature which is widely used in many speech signal
processing tasks.

Researchers have proposed to train a DNN in which one
of the hidden layers has a small number of units (i.e. the
bottleneck layer) to classify senones [11, 12, 13]. In this work,
first a speaker-independent GMM-HMM system is trained to
classify the utterance frames into senones based on Librispeech
corpus [14]. The input feature is 39-dimensional Mel-frequency
cepstral coefficients (MFCC, 13 static including the log energy
+ 13 ∆ + 13 ∆∆) which are extracted and normalized using
utterance-level mean and variance normalization. Then the
frame-senon pairs aligned by the GMM-HMM system will be
used to train a fully connected DNN. The DNN has 6 hidden
layers (with sigmoid activation function) of 2048 nodes each
except that the second to last hidden layer has only 64 units.
The output layer, which is the classification layer, is a softmax
of dimension 9020 i.e., the output layer computes posteriors for
9020 triphone tied states (senones). Once training is complete,
all the layers after the bottleneck layer are removed, and the
rest of the neural network is used to extract low-dimensional
representation of the input. That is each frame of an utterance
is forward propagated through the network, and the output
activations of all the frames are the so-called DBFs.

Once the first DNN is trained and fixed, we can feed the
DBF as inputs to a second DNN giving rise to the stacked
DBF [15, 16]. Our stacked DBFs cover a temporal context of
5 frames in the first DNN and 10 frames for the second DNN.
After we finished training the second DNN, the two DNNs are
stacked together to generate the stacked DBFs. Figure 1 shows
the framework of the stacked bottleneck DNN training.

Figure 1: Illustration of the stacked DBF neural network
training.

2.2. Latent factor analysis of stacked DBF

Latent factor analysis (LFA) is first proposed as decomposed
method to transform a speaker model into three different
components: a speaker-session-independent component,
a speaker dependent component and a session dependent
component [17]. Indeed it is a simplification of the popular
and effective joint factor analysis (JFA) [9]. Original JFA or
LFA is used as a monolithic classifier. In this work they are
employed as feature extractors and it is believed that when as a

feature extractor LFA is more efficient and effective than JFA
for short utterance (<3s). Since both the local and global low
rank vectors [3] show poor performance in our empirical study,
only the LFA model involving original supervector speaker
representation is used as the frontend.

In this work, the speaker model is define as the
concatenation of the GMM component means. Let D be
the dimension of the feature space, that is the dimension of the
stacked DBF. The dimension of a supervector mean is MD
where M is the number of Gaussian in the GMM. Assume that
the training data consists of I speakers each with Hi sessions,
LFA models data generation using the following equation:

mi,h = m + Dzi + Uxi,h (1)

where mi,h is the session-speaker dependent supervector mean,
D is MD×MD diagonal matrix, zi the speaker vector (a MD
vector), U is the session variability matrix of low rank R and
xi,h are the channel factors, a R vector. Both zi and xi,h are
normally distributed among N(0, I).

Once the training is complete, the LFA model (1) is used
to compute the speaker vector zi, which will be used as a
representation of the very short utterance, and this zi will be
used in the speaker verification. This speaker vector zi is in the
level of utterance, however in the task of speaker verification
with random prompted digit strings, since different speakers
have their own characterizations in pronouncing each same
digit. This digit-dependent characterization will definitely help
in this task. In order to extract digit-dependent zi, we trained a
DNN-HMM automatic speech recognition (ASR) system based
on the Librispeech corpus [14] to do segmentation of the
utterances in to digits (more specifically to do the alignment
between the utterance and the prompt digit string) and then a
digit LFA

mi,d,h = m + Dzi,d + Uxi,h (2)

is constructed, where mi,d,h is the session-speaker-digit
dependent supervector mean, zi,d the speaker-digit vector and
xi,h are the channel factors, which are digit-independent. Both
zi,d and xi,h are normally distributed among N(0, I).

2.3. Joint density backend

Assume zi and zi,d are all extracted for all
enrollment and test utterances. Joint density backend
(JDB) believes that P (zt, zs|same-speaker) and
P (zt, zs|different-speakers) (or P (zt,d, zs,d|same-speaker)
and P (zt,d, zs,d|different-speakers)) both follow normal
distributions where given a test vector zt (or zt,d) and an
enrolled model zs (or zs,d) [3].

Follow the strategy of Stafylakis et al. [3], first we estimate
the P (zt, zs|same-speaker) by concatenating zs and zt into
pairs where enrollment and test vectors belong to the same
speaker and estimate the mean µ0 and covariance matrix Σ0

of these concatenated vectors. That is

µ0 = E
[[

zs

zt

]]
(3)

and

Σ0 = E
[[

zs

zt

]
[zT

s zT
t ]

]
− µµT =

[
A B

BT C

]
. (4)

For the distribution P (zt, zs|different-speakers) of
[
zs

zt

]
that

comes from different speakers, it is assumed that has the same
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mean µ0 and while the covariances matrix is obtained by setting
the entries of the off-diagonal blocks A and C equal to zero.

In our practice, empirical study shows there will be about a
20% absolute increase in equal error rate (EER) if full matrix is
used for A, B and C. Thus in order to obtain a good result we
should make the covariance matrix A, B and C diagonal, which
can be easily achieved by estimated the covariance matrix Σ for
zs and zt separately for each component corresponding to the
original GMM.

After the training of the JDB model we treat the verification
as a kind of hypothesis testing problem with the null hypothesis
H0 where both zs and zt belong to the same speaker and the
alternative hypothesis H1 where they do not. Then the log
likelihood ratio score is

l(zt, zs) = log
P (zt, zs|H0)

P (zt, zs|H1)
= log

N (

[
zt

zs

]
|µ0, Σ0)

N (

[
zt

zs

]
|µ1, Σ1)

= − 1

2
(

[
zt

zs

]
− µ0)Σ

−1
0 (

[
zt

zs

]
− µ0)

+
1

2
(

[
zt

zs

]
− µ1)Σ

−1
1 (

[
zt

zs

]
− µ1) + const.

It is almost the same process to estimate the JDB model and
do verification based on learned JDB for local digit-dependent
representations zt,d and zs,d. Note that since on RSR2015
part III each test utterance contains 5 digits, in order to do
the verification based on speaker-digit vectors zi,d 5 digits log
likelihood ratio scores are computed and averaged to be the final
score.

2.4. Score normalization

In order to transform log likelihood ratio scores from different
speakers into a similar range by using

s′ =
s − µI

σI

so that a common threshold can be used, where µI and σI

are the approximated mean and standard deviation of the
impostor score distribution respectively. We tried three score
normalization method: zero normalization (z-norm) uses
a batch of non-target utterances against the target model
to compute the mean µI and standard deviation σI ; test
normalization (t-norm) uses the unknown speaker’s feature
vectors against a set of impostor models to compute the
statistics; the zero and test normalized scores are finally
averaged to form the s-normalized scores [3].

It is worth noting that because the digit string in RSR 2015
part III is not truly random, the test recording used in the
application contains 60 digit strings. Therefore, the impostor
recordings used in z-norm contains only the above-mentioned
digit strings.

2.5. Score calibration and fusion

Assume there are N subsystems, scores from all subsystems
were combined with a linear weighted fusion as follows

s =

N∑

n=1

wnsn + b

where {wn}N
n=1 and b are the weights and the bias. The fusion

parameters are trained on the RSR2015 part III development

set optimizing the cost Cllr [10] function assuming a binary-
class regression model in forming the class posterior. The above
calibration and fusion can be carried out easily using the FoCal
toolkit [10].

3. Experiments
In this section, we describe the experimental setup and results
for the proposed method on the public RSR2015 part III English
corpus [1].

3.1. Experimental setup

RSR2015 corpus [1] was released by I2R, and it is used
to evaluate the performance of different speaker verification
systems. In this work, we follow the setup of [3], the part
III of RSR2015 is used for the testing of our method. Part
III of RSR2015 contains 300 speakers speaking in English
and chosen so that they form a representative sample of the
Singaporean population. All speech files are of 16kHz. The
gender distribution is balanced on the data set (157 male
and 143 female). Six mobile devices were used for the
recordings that took place under a typical office environment.
The speakers are divided into three disjoint groups refereed
to as background, development and evaluation, of 97, 97 and
106 speakers respectively. Each speaker model is enrolled with
3 10-digit utterances, recorded with the same handset, while
each speaker contributes 3 different speaker models. Each test
utterance contains a quasi-random string of 5 digits, one out of
52 unique strings. For both types of utterances, the digit string
is given and the verification algorithm may use it. In Table I,
the number of trials used for the experiments are given for each
set and gender1.

Table 1: Trial statistics for RSR2015 digits per set and gender.

Set Gender #target #nontarget
Dev Male 5154 251310
Dev Female 5052 231155
Eval Male 5943 332863
Eval Female 5283 253584

3.2. Results and discussion

Eight systems are evaluated and compared across above
conditions:

• MFCC-GMM-UBM: the standard MFCC with GMM-
UBM system.

• SDBF-GMM-UBM: the stacked DBF with GMM-UBM
system.

• SDBF-DIGIT-GMM-UBM: the stacked DBF with digit
level GMM-UBM system.

• SDBF-UTTZ: the utterance level zi supervector
representation extracted using the stacked DBFs with
cosine similarity.

• SDBF-DIGITZ: the digit level zi,d supervector
representation extracted using the stacked DBFs with
average cosine similarity across the utterance.

1The numbers of trials are the same as the work [1] and a little
different from [3] of Dr. Stafylakis, since they rejected some utterances
due to duration and SNR constrains.
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• SDBF-UTTZ-JDB: the utterance level zi supervector
representation extracted using the stacked DBFs with log
likelihood scores of JDB.

• SDBF-DIGITZ-JDB: the digit level zi,d supervector
representation extracted using the stacked DBFs with
average log likelihoods scores of JDB across the
utterance.

• Fusion: fusion of all the seven systems based on the
stacked DBFs, including SDBF-GMM-UBM, SDBF-
DIGIT-GMM-UBM, SDBF-UTTZ, SDBF-DIGITZ,
SDBF-UTTZ-JDB, and SDBF-DIGITZ-JDB.

Table 2 and Table 3 compare the performances of all
above-mentioned systems in terms of equal error rate (EER)
on the development and evaluation sets of RSR2015 part III
respectively. Obviously stacked DBF is superior to the standard
MFCC feature in this task, regardless of the test database and
the backend used, when compared with results in [3].

The experimental results show that after using z-norm, EER
decreased but the amplitude was significantly different. Among
them, the improvement of JDB based systems was the most
obvious and the average reduction was about 0.8%. The EER
on the female development data decreased the most and nearly
about 1.3%. However, the scores for GMM-UBM and cosine
distance are not significant, and the EER is reduced by only
about 0.3%. The same rule exists for s-norm, but the reduction
in EER is reduced. The highest EER reduction for JDB based
system is 0.36%. Overall, z-norm and s-norm have a significant
improvement on female data sets. It can be seen from the results
that the fusion can obtain the state-of-the-art performance.

In addition, from the analysis of the vocabulary table
of RSR2015 part III, it can be seen that the probability of
occurrence of each digit of all the test recordings for a speaker’s
one channel is uniform, but due to the error of ASR, individual
digital recording clips are mistakenly rejected, eventually
leading to each bit. The probability of appearance of digits
is not uniform, and the digital probability of each speaker
becomes less predictable. However, the output score of the
JDBs on the digits is dependent on the number, which directly
leads to the use of the conventional z-norm score is not
reasonable.

Table 2: Performance of different systems on the development
set of RSR2015 part III in terms of equal error rate (EER %)
for male/female.

EER(%) w/o
norm

z-norm t-norm s-norm

M-G-U1 5.05/6.34 5.01/6.58 4.65/6.42 4.69/6.50
S-G-U 4.50/5.93 4.32/5.83 3.91/5.15 3.86/5.21

S-D-G-U 4.18/5.35 3.91/4.85 3.50/4.63 3.42/4.53
S-U 3.09/3.57 2.88/3.31 2.69/3.13 2.65/3.06
S-D 4.13/4.20 3.83/3.82 3.27/3.70 3.21/3.51

S-U-J 3.41/3.80 3.17/2.96 2.75/3.56 2.46/2.63
S-D-J 4.57/5.47 4.14/3.38 3.65/3.96 3.31/3.24

4. Conclusions
In this paper we investigated the effectiveness of latent
factor analysis (LFA) modeling for stacked deep bottleneck

1Here M-G-U stands for MFCC-GMM-UBM, and other notations
have the same meaning.

Table 3: Performance of different systems on the evaluation set
of RSR2015 part III in terms of equal error rate (EER %) for
male/female.

EER(%) w/o
norm

z-norm t-norm s-norm

M-G-U 3.93/6.37 3.81/4.39 3.38/3.66 3.54/3.23
S-G-U 3.54/5.61 3.20/3.42 2.72/2.85 2.70/2.68

S-D-G-U 3.48/3.46 2.98/3.53 2.82/3.34 2.61/3.18
S-U 2.53/2.55 2.28/2.30 1.52/1.84 1.83/1.90
S-D 4.35/3.47 2.96/2.75 2.43/2.90 2.45/2.64

S-U-J 2.19/3.07 2.10/2.38 1.83/2.32 1.57/1.84
S-D-J 3.51/4.55 2.90/2.98 2.68/3.19 2.48/2.56
Fusion 2.13/2.41 1.69/1.72 1.47/1.51 1.40/1.55

features (DBF) on the task of speaker verification with random
prompt digit strings. Benefits from the strength of deep
architecture in modeling data correlation without the need of
handcrafted transformation, stacked DBF leads to %10 relative
improvement. Further with the help of LFA on both utterance
and digit scales to get rid of the channel and session noise we
achieve the new state-of-the-art on RSR2015 part III task.
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