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Abstract
Online speech recognition is crucial for developing natural
human-machine interfaces. This modality, however, is signifi-
cantly more challenging than off-line ASR, since real-time/low-
latency constraints inevitably hinder the use of future informa-
tion, that is known to be very helpful to perform robust predic-
tions.

A popular solution to mitigate this issue consists of feeding
neural acoustic models with context windows that gather some
future frames. This introduces a latency which depends on the
number of employed look-ahead features.

This paper explores a different approach, based on estimat-
ing the future rather than waiting for it. Our technique encour-
ages the hidden representations of a unidirectional recurrent net-
work to embed some useful information about the future. In-
spired by a recently proposed technique called Twin Networks,
we add a regularization term that forces forward hidden states to
be as close as possible to cotemporal backward ones, computed
by a “twin” neural network running backwards in time.

The experiments, conducted on a number of datasets, recur-
rent architectures, input features, and acoustic conditions, have
shown the effectiveness of this approach. One important ad-
vantage is that our method does not introduce any additional
computation at test time if compared to standard unidirectional
recurrent networks.
Index Terms: online speech recognition, recurrent neural net-
works, regularization, deep learning.

1. Introduction
Automatic speech recognition (ASR) has made great strides in
recent years [1]. Deep learning, in particular, has contributed
to radical transformations in the field, allowing current technol-
ogy to reach unprecedented performance levels [2, 3]. Despite
the impressive achievements of the last years, many open chal-
lenges remain in the field [4].

One important issue is the performance drop observed when
going from off-line to online speech recognition. The latter
recognition modality is significantly more challenging than off-
line ASR, due to the real-time/low-latency constraints which
inevitably arise. To provide a speech transcription with low-
latency, the speech decoding must start while acquiring the sig-
nal itself, forcing the acoustic model to perform predictions
mostly based on current and past information. Future infor-
mation plays an important role to perform robust predictions,
due to both phoneme co-articulations and linguistic dependen-
cies [5].

Despite its complexity, online speech recognition is a key
component towards a more natural human-machine interaction,
and extensive effort has been devoted in the last decade to im-
prove this technology. Past online recognizers were based on
the GMM-HMM framework [6], while current solutions rely on

deep learning [2]. In particular, the use of feed-forward Deep
Neural Networks (DNNs), including both fully-connected and
convolutional architectures, has been largely investigated in the
literature [7, 8], especially in the context of online ASR per-
formed on small-footprint devices [9–13]. Attempts have also
been made to develop robust online speech recognizers based
on RNNs, exploiting both the traditional RNN-HMM frame-
work [14–19] and, more recently, end-to-end ASR technology
[20, 21].

A common aspect of past approaches is that they often em-
ploy asymmetric context windows [22–24], that embed more
past than future information. Despite their effectiveness, con-
text windows inevitably introduce a trade-off between latency
(that depends on the number of look-ahead frames) and recog-
nition accuracy. Moreover window-based approaches focus on
short-term future dependencies only, while long-term informa-
tion cannot be used without incurring an unacceptable latency.

In contrast to past work, this paper attempts to predict the
future rather than waiting for it. Our technique encourages the
hidden representations of a unidirectional recurrent network to
embed some relevant features about the future, providing use-
ful information on the upcoming phonetic and linguistic depen-
dencies. Inspired by a recently proposed technique called Twin
Networks [25], we add a regularization term that forces forward
hidden states to be as close as possible to cotemporal backward
ones, computed by a twin neural network running backwards in
time. The twin backward network is employed at training time,
when online constraints do not arise. At test time only the for-
ward states are computed, leading to a model that (ideally) does
not introduces any latency and does not add any computation
compared to standard unidirectional recurrent networks.

The experiments, conducted on several datasets, recur-
rent architectures, input features, and acoustic conditions, have
shown the effectiveness of our approach. To summarize, the
contribution of this paper is two-fold. Firstly, we design a novel
method for online ASR that predicts future states of the model
and demonstrate that it is well motivated. Secondly, we evalu-
ate the proposed method under a variety of experimental condi-
tions, showing its effectiveness against strong baselines.

The rest of the paper is organized as follows. Twin regu-
larization for online ASR and the related work are outlined in
Sec. 2. The experimental setup and the results are presented
and discussed in Sec. 3 and Sec. 4 respectively. Finally, Sec. 6
draws our conclusions.

2. Twin Regularization for Online ASR
In the context of hybrid RNN-HMM speech recognition,
the neural network processes the input speech sequence
X = {x1, ..., xt, .., xN} and computes, at each time step t, a
hidden state in the following way:

−→
ht = f−→

θ
(xt,
−→
h t−1), (1)
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Figure 1: An example of a recurrent acoustic model extended
with a Twin Network. The regularization term Ω encourages
forward and backward hidden states to be as close as possible.
Dashed lines refer to computations done at training time only.

where f−→
θ

is a function that depends on trainable parameters
−→
θ

(such as an LSTM or a GRU cell), and → highlights that the
network scans the sequence in the forward direction. The for-
ward states summarize the information about current and past
elements of the sequence. A linear transformation, followed by
a softmax classifier, is then employed to perform predictions
Ŷ = {ŷ1, ..., ŷt, .., ŷN} over a set of phone states.

These posterior probabilities, after being normalized by
their prior, feed a HMM-based decoder that integrates acous-
tic and linguistic information into a search graph and estimates
the sequence of words uttered by the speaker. The decoding
step is normally very computationally demanding, especially
for large vocabulary speech recognition. For the unidirectional
RNN models described above, however, the output ŷt at each
time step t can be computed without waiting for the full speech
utterance to finish. The decoding step can thus start while ac-
quiring the speech signal from the user.

The RNN model is trained to optimize the negative log-
likelihood (NLL) cost function:

L(X,Y ;
−→
θ ) = − 1

N

N∑

t=1

logP−→
θ

(yt|{x0, .., xt}),

where Y = {y1, ..., yt, .., yN} is the sequence of targeted
phone labels and P−→

θ
(yt|{x0, .., xt}) is the output probability

estimated by the neural network (that is given by reading the
entry for yt from the RNN output vector ŷt).

When possible, it is very convenient to also process the
speech sequence in the reverse time order, and compute back-
ward states similarly to Eq. 1:

←−
ht = f←−

θ
(xt,
←−
h t+1).

The backward states summarize the information about cur-
rent and future elements of the sequence. In standard Bidi-
rectional RNNs [26], forward and backward hidden states are
combined to perform predictions based on the whole speech se-
quence. This leads to a substantial performance improvement in
ASR [5]. Differently from unidirectional RNNs, bidirectional
models cannot be used for online speech recognition, since each
prediction ŷt depends on the full input sequence X .

Nevertheless, even if the future is not accessible, we can try
to roughly predict it, capturing some relevant features that help
phone predictions. This principle can be implemented by means
of a regularization term, as highlighted in Fig. 1. The idea is
to penalize forward hidden representations

−→
ht that are distant

from the cotemporal backward ones
←−
ht [25]. With this regard,

one can add a regularization term that encourage the network to
minimize the L2 distance between forward and backward hid-
den states:

Ω(
−→
θ ,
←−
θ ) =

1

N

N∑

t=1

‖−→ht −
←−
ht‖2. (2)

The regularization term is averaged over all time steps. In gen-
eral, multiple recurrent hidden layers are stacked together to
perform more robust predictions. In this case, the regulariza-
tion term can be simply averaged over all the recurrent layers.
The total objective to be minimized thus becomes a weighted
sum of the NLL costs plus the regularization term:

L̃(X,Y ;
−→
θ ,
←−
θ ) = L(X,Y ;

−→
θ )+L(X,Y ;

←−
θ )+λΩ(

−→
θ ,
←−
θ ),

where λ is an hyper-parameter controlling the importance of the
penalty term, and L̃ is the total loss that is averaged over all the
sentences composing the mini-batch.

Note that the backward states are needed only at training
time, when online constraints do not arise. During testing,
the part of the model computing backward states can be omit-
ted. This leads to an architecture particularly suitable for on-
line ASR, since it requires exactly the same amount of compu-
tations needed for standard unidirectional RNNs (at inference
time). Another remarkable aspect of this technique is that Eq. 2
is based on the backward states

←−
ht , that provide a summary of

the full future part of the speech sequence. This means that our
method could capture not only short-term future dependencies,
but also long-term ones.

2.1. Related Work

Several methods have been proposed in the literature to ap-
proach online ASR with RNNs. A popular choice is to feed the
RNN with a context window that embeds some future frames
[14, 15]. Attempts have also been done to build low-latency
bidirectional RNNs [16–19]. The latter solutions are based on
chunking the speech signal into several overlapping or non-
overlapping windows. Each chunk embeds both past and fu-
ture speech frames and is processed by an bidirectional RNN
to perform phone predictions. These approaches, however, only
account for a limited fraction of the future information, inherit-
ing the same issues discussed for feed-forward DNNs.

This paper proposes the use of twin regularization to im-
prove the way online RNNs exploit the future information.
Twin regularization has been recently proposed in [25]. Its ef-
fectiveness has been proved in sequence generation tasks, such
as image captioning, language modeling, and monaural singing
voice separation [27]. Some works [28, 29] take a similar ap-
proach to train stochastic recurrent models with a backward
running RNN. These approaches have been applied to speech
synthesis, language modeling, image generation, and demon-
strate that the idea of predicting future states is well-motivated,
practically sound, and worth exploring.

To the best of our knowledge, this paper is the first attempt
to build a predictor of future states for an online ASR model.
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Table 1: PER(%) on the TIMIT dataset obtained with various RNN architectures and input features. Our approach UniTwin shows
stable improvement in all cases. BiDir corresponds to the off-line recognition with bidirectional networks (reported here to provide a
lower bound for the error rates of the online models).

MFCC FBANK fMLLR
UniDir UniTwin BiDir UniDir UniTwin BiDir UniDir UniTwin BiDir

LSTM 17.3 17.1 15.7 17.2 17.0 15.1 16.9 16.3 14.7
GRU 17.9 17.4 16.0 18.1 18.0 15.3 16.9 16.6 15.3
M-GRU 17.8 17.5 16.1 18.0 17.6 15.4 16.8 16.4 15.1
Li-GRU 17.5 17.1 15.5 17.3 16.8 14.6 16.7 16.2 14.6

3. Experimental Setup
In the following sub-sections, the corpora and the RNN-HMM
setting adopted for the experimental activity are described.

3.1. Corpora and Tasks

The first set of experiments was performed with the TIMIT cor-
pus [30], considering the standard phoneme recognition task
(aligned with the Kaldi s5 recipe [31]).

To validate our model in a more challenging scenario, ex-
periments were also conducted in distant-talking conditions
with the DIRHA-English dataset [32]. Training was based on
the original WSJ-5k corpus (consisting of 7138 sentences ut-
tered by 83 speakers) that was contaminated with a set of im-
pulse responses measured in a real apartment [33]. The test
phase was carried out with the real-part of the dataset, consist-
ing of 409 WSJ sentences uttered in the aforementioned apart-
ment by six native American speakers.

Additional experiments were conducted with the CHiME 4
dataset [34], that is based on speech data recorded in four noisy
environments (on a bus, cafe, pedestrian area, and street junc-
tion). The training set is composed of 43690 noisy WSJ sen-
tences recorded by five microphones (arranged on a tablet) and
uttered by a total of 87 speakers. The test set ET-real consid-
ered in this work is based on 1320 real sentences uttered by four
speakers, while the subset DT-real has been used for hyperpa-
rameter tuning. The CHiME experiments were based on the
single channel setting [34].

Finally, experiments were performed with LibriSpeech [35]
dataset. We used the training subset composed of 100 hours and
the dev-clean set for the hyperparameter search. Test results are
reported on the test-clean part.

3.2. RNN-HMM setting

The experiments are set up considering different acoustic fea-
tures, i.e., 39 MFCCs (13 static+∆+∆∆), 40 log-mel filter-
bank features (FBANKS), as well as 40 fMLLR features (ex-
tracted as reported in the s5 recipe of Kaldi [31]), that were
computed using windows of 25 ms with an overlap of 10 ms.

Neural acoustic models consisted of multiple recurrent lay-
ers, that were stacked together prior to the final softmax classi-
fier. These recurrent layers were unidirectional or bidirectional
RNNs. Beyond standard LSTM [36] and GRU [37], we also
considered recently proposed architectural variations [38]: M-
GRU [39] is the minimal GRU architecture based on replacing
reset gate with updated gate activations, while light GRU (Li-
GRU) [40] directly avoids the reset gate and exploits ReLU ac-
tivations for the hidden activations.

The feed-forward connections of the architecture were ini-
tialized according to the Glorot’s scheme [41], while recurrent
weights were initialized with orthogonal matrices [42]. Re-

current dropout was used as regularization technique [43, 44].
Batch normalization was adopted for feed-forward connections
only, as proposed in [38, 45].

The optimization was done using the RMSprop algorithm
running for 24 epochs. The performance on the development
set was monitored after each epoch, and the learning rate was
halved when the relative performance improvement went be-
low 0.1%. Back-propagation through time was not truncated,
allowing the system to learn arbitrarily long time dependencies.

The main hyperparameters of the model (i.e., learning rate,
number of hidden layers, hidden neurons per layer, dropout fac-
tor, as well as the twin regularization term λ) were optimized on
the development datasets. In particular, we guessed some ini-
tial values according to our experience, and starting from them
we performed a grid search to progressively explore better con-
figurations. As a result, we adopted λ = 0.6 for TIMIT ex-
periments, and λ = 0.1 for the other datasets. Please refer to
the github repository referenced in the footnote below for more
details about the considered hyperparameters.

The labels were derived by performing a GMM-based
forced alignment on the original training datasets (see the stan-
dard s5 recipe of Kaldi for more details [31]). During test, the
posterior probabilities generated by the RNN were normalized
by their prior probabilities. The obtained likelihoods were pro-
cessed by an HMM-based decoder, that estimated the sequence
of words uttered by the speaker.

The RNN part of the system was implemented with Py-
torch [46], that was coupled with the Kaldi decoder [31] to form
a context-dependent RNN-HMM speech recognizer.1

4. Results
In the following sub-sections, we report the experimental re-
sults obtained with TIMIT, DIRHA, CHiME, and LibriSpeech
datasets.

4.1. Phoneme recognition on TIMIT

To provide a thorough assessment of our methodology, several
RNNs models and features are considered. Table 1 shows the
results obtained with TIMIT. The results with off-line bidirec-
tional models (BiDir columns) are reported only to provide a
lower bound for the error rates that can be achieved with an on-
line model. Moreover, to ensure a more accurate comparison,
five experiments varying the initialization seeds were conducted
for each RNN model and input feature. Results of Table 1 are
thus reported as the average phone error rates (PER)2.

1The code is available at http://github.com/
mravanelli/pytorch-kaldi/.

2Standard deviations σ range between 0.1 and 0.2 for all the exper-
iments.
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Figure 2: Learning curves for unidirectional and twin RNN
models (fbank features, Li-GRU model).

Table 2: PER(%) on TIMIT obtained with a context windows
that embeds some future frames (Li-GRU model, fbank feats).

# Future Frames UniDir UniTwin
0 frames 17.3 16.8
5 frames 16.5 16.1
10 frames 16.8 16.5
15 frames 17.5 16.9

Twin regularization (UniTwin columns) helps to improve
the recognition performance, consistently outperforming stan-
dard unidirectional models (UniDir columns) in all the consid-
ered experimental conditions. Although our method is still far
from bridging the gap with off-line bidirectional models, we
observe an average relative improvement of 2.1%, which is ob-
tained with a simple technique that does not introduce any ad-
ditional computation at test time.

Li-GRU consistently outperforms the other RNN models,
as previously observed in [38]. A remarkable achievement is
the average PER of 14.6% obtained with Li-GRUs using fM-
LLR and fbank features. To the best of our knowledge, this
result yields one of the highest published performance on the
TIMIT test-set. We plot the learning curves for the frame-level
error rates (FER) obtained on the development set over the du-
ration of training in Fig. 2. Our experiments show that twin
regularization converges to a better solution.

The results presented above are obtained with RNNs fed
with the current frame only. Similarly to the window-based
approaches described in Sec. 2, Tab. 2 extends our previ-
ous results by adding a small context window that concatenates
some future frames. The table shows that a small look-ahead
context window embedding 5 or 10 future frames is helpful to
improve the ASR performance. Interestingly, our method out-
performs standard unidirectional RNNs even under this experi-
mental condition. This achievement confirms that twin regular-
ization can focus on long-term future dependencies, providing
useful information also when some look-ahead frames embed a
short-term future context. This allows our method to be used in
conjunction with previous window-based approaches.

4.2. Word recognition on other datasets

As a last experiment, we extend our previous achievements to
more realistic ASR tasks. To test our technique into a complex

acoustic scenario, Tab. 3 reports the word error rate (WER) ob-
tained with the DIRHA dataset. For the sake of compactness,
only the results with MFCCs are reported. It is worth men-
tioning that we obtained a similar experimental evidence using
fbank and fMLLR features.

Table 3: WER(%) for the DIRHA dataset (MFCC feats).

UniDir UniTwin BiDir
LSTM 32.9 32.5 27.8
GRU 30.2 29.6 27.2
Li-GRU 29.2 28.7 26.9

Table 4: WER(%) for CHiME (ET-Real) and Librispeech (Test-
Clean) using Li-GRU models and MFCC feats.

UniDir UniTwin BiDir
CHiME 23.7 23.0 19.2
LibriSpeech 10.4 10.2 9.2

We conclude from this experiment that twin regularization
is also effective in challenging acoustic conditions characterized
by the presence of both noise and reverberation.

To further test its robustness in noisy environments, we also
performed some experiments with the CHiME dataset (see first
row of Tab. 4). Moreover, to provide evidence on a larger
vocabulary task, the second row of Tab. 4 reports the results
achieved with LibriSpeech. These results are obtained with
the 100 hours subset decoded with the tgsmall language model
(see Kaldi s5 recipe [31]). Our experiments target the online
ASR scenario, therefore the results reported in the table do
not consider complex techniques as multi-microphone process-
ing, data-augmentation. Neither system combination nor lattice
rescoring are used here. It is however worth noting that the
effectiveness of the proposed approach is one more time con-
firmed.

5. Conclusions
This paper explored the use of twin regularization for predict-
ing the future states of an online RNN-HMM speech recogni-
tion. The proposed technique, that encourages forward hidden
representations to be predictive of the future, has shown to be
effective in several experimental conditions.

An average relative performance improvement of 2% is ob-
tained over a standard unidirectional RNNs. The improvement
is consistent across datasets, architectures, and input features.
Furthermore, our proposed technique is simple and does not add
any additional computational cost at test time.

A noteworthy aspect of our method is that it also accounts
for long-term future dependencies, which differs from current
dominant approaches based on short-term context windows.
This offers the possibility of using twin regularization in con-
junction with existing techniques.
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(www.computecanada.ca).

3721



7. References
[1] D. Yu and L. Deng, Automatic Speech Recognition – A Deep

Learning Approach. Springer, 2015.

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016.

[3] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent
pre-trained deep neural networks for large-vocabulary speech
recognition,” IEEE Transactions on Audio, Speech, and Language
Processing, no. 1, 2012.

[4] F. M. S. Watanabe, M. Delcroix and J. R. Hershey, New Era
for Robust Speech Recognition - Exploiting Deep Learning.
Springer, 2017.

[5] A. Graves, N. Jaitly, and A. Mohamed, “Hybrid speech recogni-
tion with Deep Bidirectional LSTM,” in Proc of ASRU, 2013.

[6] X. Huang, A. Acero, and H. Hon, Spoken Language Processing:
A Guide to Theory, Algorithm, and System Development. Pren-
tice Hall PTR, 2001.

[7] G. Chen, C. Parada, and G. Heigold, “Small-footprint keyword
spotting using deep neural networks,” in Proc. of ICASSP, 2014.

[8] M. Bacchiani, A. W. Senior, and G. Heigold, “Asynchronous, on-
line, GMM-free training of a context dependent acoustic model
for speech recognition,” in Proc. of Interspeech, 2014.

[9] Y. Wang, J. Li, and Y. Gong, “Small-footprint high-performance
deep neural network-based speech recognition using split-VQ,” in
Proc. of ICASSP, 2015.

[10] G. Chen, C. Parada, and G. Heigold, “Small-footprint keyword
spotting using deep neural networks,” in Proc. of ICASSP, 2014.

[11] T. N. Sainath and C. Parada, “Convolutional neural networks for
small-footprint keyword spotting,” in Proc. of Interspeech, 2015.

[12] X. Lei, A. Senior, A. Gruenstein, and J. Sorensen, “Accurate and
compact large vocabulary speech recognition on mobile devices.”
in Proc. of Interspeech, 2013.

[13] L. Lu and S. Renals, “Small-footprint highway deep neural net-
works for speech recognition,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, no. 7, 2017.

[14] X. Tian, J. Zhang, Z. Ma, Y. He, J. Wei, P. Wu, W. Situ, S. Li, and
Y. Zhang, “Deep LSTM for large vocabulary continuous speech
recognition,” arXiv:1703.07090, 2017.

[15] V. Peddinti, Y. Wang, D. Povey, and S. Khudanpur, “Low Latency
Acoustic Modeling Using Temporal Convolution and LSTMs,”
IEEE Signal Processing Letters, no. 3, 2018.

[16] S. Xue and Z. Yan, “Improving latency-controlled BLSTM acous-
tic models for online speech recognition,” in Proc. of ICASSP,
2017.
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