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Abstract
Our goal is to isolate individual speakers from multi-talker si-
multaneous speech in videos. Existing works in this area have
focussed on trying to separate utterances from known speakers
in controlled environments. In this paper, we propose a deep
audio-visual speech enhancement network that is able to sep-
arate a speaker’s voice given lip regions in the corresponding
video, by predicting both the magnitude and the phase of the
target signal. The method is applicable to speakers unheard and
unseen during training, and for unconstrained environments.
We demonstrate strong quantitative and qualitative results, iso-
lating extremely challenging real-world examples.
Index Terms: speech enhancement, speech separation

1. Introduction
In the film The Conversation (dir. Francis Ford Coppola, 1974),
the protagonist, played by Gene Hackman, goes to inordinate
lengths to record a couple’s converservation in a crowded city
square. Despite many ingenious placements of microphones, he
did not use the lip motion of the speakers to suppress speech
from others nearby. In this paper we propose a new model
for this task of audio-visual speech enhancement, that he could
have used.

More generally, we propose an audio-visual neural network
that can isolate a speaker’s voice from others, using visual in-
formation from the target speaker’s lips: Given a noisy audio
signal and the corresponding speaker video, we produce an en-
hanced audio signal containing only the target speaker’s voice
with the rest of the speakers and background noise suppressed.

Rather than synthesising the voice from scratch, which
would be a challenging task, we instead predict a mask that fil-
ters the noisy spectrogram of the input. Many speech enhance-
ment approaches focus on refining only the magnitude of the
noisy input signal and use the noisy phase for the signal recon-
struction. This works well for high signal-to-noise-ratio scenar-
ios, but as the SNR decreases, the noisy phase becomes a bad
approximation of the ground truth one [1]. Instead, we propose
correction modules for both the magnitude and phase. The ar-
chitecture is summarised in Figure 1. In training, we initialize
the visual stream with a network pre-trained on a word-level lip-
reading task, but after this, we train from unlabelled data (Sec-
tion 3.1) where no explicit annotation is required at the word,
character or phoneme-level.

There are many possible applications of this model; one of
them is automatic speeech recognition (ASR) – while machines
can recognise speech relatively well in noiseless environments,
there is a significant deterioration in performance for recogni-
tion in noisy environments [2]. The enhancement method we
propose could address this problem, and improve, for example,
ASR for mobile phones in a crowded environment, or automatic
captioning for YouTube videos.

The performance of the model is evaluated for up to five
simultaneous voices, and we demonstrate both strong qualita-
tive and quantitative performance. The trained model is eval-
uated on unconstrained ’in the wild’ environments, and for
speakers and languages unseen at training time. To the best of
our knowledge, we are the first to achieve enhancement under
such general conditions. We provide supplementary material
with interactive demonstrations on http://www.robots.
ox.ac.uk/˜vgg/demo/theconversation.

1.1. Related works
Various works have proposed methods to isolate multi-talker si-
multaneous speech. The majority of these are based on methods
that only use the audio, e.g. by using voice characteristics of a
known speaker [3, 4, 5, 6, 7]. Compared to audio-only methods,
we not only separate the voices but also properly assign them to
the speakers, by using the visual information.

Speech enhancement methods have traditionally only dealt
with filtering the spectral magnitudes, however many ap-
proaches have been recently been proposed for jointly enhanc-
ing the magnitude and phase spectra [1, 8, 9, 10, 11, 12, 13].
The prevalent method for estimating phase spectra from given
magnitudes in speech synthesis is the one proposed by Griffin
and Lim [14].

Prior to deep learning, a large number of previous works
have been developed for audio-visual speech enhancement by
predicting masks [15, 16] or otherwise [17, 18, 19, 20, 21, 22,
23], with an overview of audio-visual source separation is pro-
vided in [24]. However, we will concentrate from hereon on
methods that have built on these using a deep learning frame-
work.
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Figure 1: Audio-visual enhancement architecture overview. It consists
of two modules: a magnitude sub-network and a phase sub-network.
The first sub-network receives the magnitude spectrograms of the noisy
signal and the speaker video as inputs and outputs a soft mask. We then
multiply the input magnitudes element-wise with the mask to produce a
filtered magnitude spectrogram. The magnitude prediction, along with
the phase spectrogram obtained from the noisy signal are then fed into
the second sub-network, which produces a phase residual. The residual
is added to the noisy phase, producing the enhanced phase spectro-
grams. Finally the enhanced magnitude and phase spectra are trans-
formed back to the time domain, yielding the enhanced signal.
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In [25] a deep neural network is developed to generate
speech from silent video frames of a speaking person. This
model is used in [26] for speech enhancement, where the pre-
dicted spectrogram serves as a mask to filter the noisy speech.
However, the noisy audio signal is not used in the pipeline, and
the network is not trained for the task of speech enhancement.
In contrast, [27] synthesizes the clean signal conditioning on
both the mixed speech input and the input video. [28] also use a
similar audio-visual fusion method, trained to both generate the
clean signal and to reconstruct the video. Both papers use the
phase of the noisy input signal as an approximation for the clean
phase. However, these methods are limited in that they are only
demonstrated under constrained conditions (e.g. the utterances
consist of a fixed set of phrases in [28] ), or for a small number
of speakers that have been seen during training.

Our method differs from these works in several ways: (i) we
do not treat the spectrograms as images but as temporal signals
with the frequency bins as channels; this allows us to build a
deeper network with a large number of parameters that trains
fast; (ii) we generate a soft mask for filtering instead of directly
predicting the clean magnitudes, which we found to be more
effective; (iii) we include a phase enhancing sub-network; and,
finally, (iv) we demonstrate on previously unheard (and unseen)
speakers and on in-the-wild videos.

In concurrent and independent work, [29] develop a sim-
ilar system, based on dilated convolutions and a bidirectional
LSTM, demonstrating good results in unconstrained environ-
ments, while [30] train a network for audio-visual synchronisa-
tion and successfully use its features for speech separation.

The enhancement method proposed here is complementary
to lip reading [31, 32, 33], which has also been shown to im-
prove ASR performance in noisy environments [34, 35].

2. Architecture
This section describes the input representations and architec-
tures for the audio-visual speech enhancement network. The
network ingests continuous clips of the audio-visual data. The
model architecture is given in detail in Figure 2.

2.1. Video representation
Visual features are extracted from the input image frame se-
quence with a spatio-temporal residual network similar to the
one proposed by [33], pre-trained on a word-level lip reading
task. The network consists of a 3D convolution layer, followed
by a 18-layer ResNet [36]. For every video frame the network
outputs a compact 512 dimensional feature vector fv0 (where
the subscript 0 refers to the layer number in the audio-visual net-
work). Since we train and evaluate on datasets with pre-cropped
faces, we do not perform any extra pre-processing, besides con-
version to grayscale and an appropriate scaling.

2.2. Audio representation
The acoustic representation is extracted from the raw audio
waveforms using Short Time Fourier Transform (STFT) with a
Hann window function, which generates magnitude and phase
spectrograms. STFT parameters are computed in a similar man-
ner to [27], so that every video frame of the input sequence cor-
responds to four temporal slices of the resulting spectrogram.
Since the videos are at 25fps (40ms per frame), we select a hop
length of 10ms with a window length of 40ms at a sample rate
of 16Khz. The resulting spectrograms have frequency resolu-
tion F = 321, representing frequencies from 0 to 8 kHz, and
time resolution T ≈ Ts

hop
, where Ts is the duration of the signal

in seconds. The magnitude and phase spectrograms are rep-
resented as T × 321 and T × 642 tensors respectively, with
the real and imaginary components concatenated along the fre-
quency axis for the latter. We convert the magnitudes to mel-
scale spectrograms, with 80 frequency bins before feeding them
to the magnitude subnetwork, however we conduct the filtering
on the original, linear-scale spectrograms.

2.3. Magnitude sub-network
The visual feature sequence fv0 is processed by a residual net-
work of 10 convolutional blocks. Every block consists of a tem-
poral convolution with kernel width 5 and stride 1, preceded by
ReLU activation and batch normalization. A shortcut connec-
tion adds the block’s input to the result of the convolution. A
similar stack of 5 convolutional blocks is employed for process-
ing the audio stream. The convolutions are performed along
the temporal dimension, with the frequencies of the noisy in-
put spectrogram Mn viewed as the channels. Two of the in-
termediate blocks perform convolutions with stride 2, overall
down-sampling the temporal dimension by 4, in order to bring
it down to the video stream resolution. The skip connections of
those layers are down-sampled by average pooling with stride
2. The audio and visual streams are then concatenated over the
channel dimension: fav0 = [fv10; fa5 ]. The fused tensor is passed
through another stack of 15 temporal convolution blocks. Since
we want the output mask to have the same temporal resolution
as the input magnitude spectrogram, we include two transposed
convolutions, each up-sampling the temporal dimension by a
factor of 2, resulting in a factor of 4 in total. The fusion output
is projected through position-wise convolutions onto the origi-
nal magnitude spectrogram dimensions and passed through sig-
moid activation in order to output a mask with values between 0
and 1. The resulting tensor is multiplied with the noisy magni-
tude spectrogram element-wise to produce the enhanced mag-
nitudes:

M̂ = σ(WT
mf

av
15 )�Mn

2.4. Phase sub-network
Our intuition for the design of the phase enhancement sub-
network is that there is structure in speech that induces a cor-
relation between the magnitude and phase spectrograms. As
with the magnitudes, instead of trying to predict the clean phase
from scratch, we only predict a residual that refines the noisy
phase. The phase sub-network is therefore conditioned on both
the noisy phase and the magnitude predictions. These two in-
puts are fused together through linear projection and concate-
nation and then processed by a stack of 6 temporal convolution
blocks, with 1024 channels each. The phase residual is formed
by projecting the result onto the dimensions of the phase spec-
trogram and is added to the noisy phase. The clean phase pre-
diction is finally obtained by L2-normalizing the result:

φ6 = ConvBlock(. . . ConvBlock([WT
mφM̂ ;WT

nφΦn]))︸ ︷︷ ︸
×6

Φ̂ =
(WT

φ φ6 + Φn)

||(WT
φ φ6 + Φn)||2

In training, the weights of the layers are initialized with small
values and zero biases, so that the initial residuals are nearly
zero and the noisy phase is propagated to the output.

2.5. Loss function
The magnitude subnetwork is trained by minimizing theL1 loss
between the predicted magnitude spectrogram and the ground
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Figure 2: Audio-visual enhancement network. BN: Batch Normalization, C: number of channels; K: kernel width; S: strides – fractional ones denote
transposed convolutions. The network consists of a magnitude and a phase sub-network. The basic building unit is the temporal convolutional block with
pre-activation [37] shown on the left. Identity skip connections are added after every convolution layer (and speed up training). All convolutional layers
have 1536 channels in the magnitude sub-network and 1024 in the phase subnetwork. Depth-wise separable convolution layers [38] are used, which
consist of a separate convolution along the time dimension for every channel, followed by a position-wise projection onto the new channel dimensions
(equivalent to a convolution with kernel width 1).

truth. The phase subnetwork is trained by maximizing the co-
sine similarity between the phase prediction and ground truth,
scaled by the ground truth magnitudes. The overall optimisation
objective is:

L = ||M̂ −M∗||1 − λ 1

TF

∑

t,f

M∗
tf < Φ̂tf ,Φ

∗
tf > (1)

3. Experiments
3.1. Datasets
The model is trained on two datasets: the first is the BBC-
Oxford Lip Reading Sentences 2 (LRS2) dataset [34, 39], which
contains thousands of sentences from BBC programs such as
Doctors and EastEnders; the second is VoxCeleb2 [40], which
contains over a million utterances spoken by over 6,000 differ-
ent speakers.

The LRS2 dataset is divided into training and test sets by
broadcast date, in order to ensure that there is no overlapping
video between the sets. The dataset covers a large number of
speakers, which encourages the trained model to be speaker
agnostic. However, since no identity labels are provided with
the dataset, there may be some overlapping speakers between
the sets. The ground truth transcriptions are provided with the
dataset, which allows us to perform quantitative tests on the in-
telligibility of the generated audio.

The VoxCeleb2 dataset lacks the text transcriptions, how-
ever the dataset is divided into training and test sets by iden-
tity, which allows us to test the model explicitly for speaker-
independent performance.

The audio and video on these datasets are properly synchro-
nized. Evaluation on videos where this is not the case (e.g. TV
broadcast), is possible by preprocessing with the pipeline de-
scribed in [41] to detect and track active speakers and synchro-
nize the video and the audio.

3.2. Experimental setup
We examine scenarios where we add 1 to 4 extra interference
speakers on the clean signal, therefore we generate signals with
2 to 5 speakers in total. It should be noted that the task of
separating the voice of multiple speakers with equal average
“loudness” is more challenging than separating the speech sig-
nal from background babble noise.

3.3. Evaluation protocol
We evaluate the enhancement performance of the model in
terms of perceptual speech quality using the blind source sep-
aration criteria described in [42] (we use the implementation
provided by [43]). The Signal to Interference Ratio (SIR) mea-
sures how well the unwanted signals have been suppressed, the
Signal to Artefacts Ratio (SAR) accounts for the introduction of
artefacts by the enhancement process, and the Signal to Distor-
tion Ratio (SDR) is an overall quality measure, taking both into
account. We also report results on PESQ [44], which measures
the overall perceptual quality and STOI [45], which is corre-
lated with the intelligibility of the signal. From the metrics pre-
sented above, PESQ has been shown to be the one correlating
best with listening tests that account for phase distortion[46].

Additionally, we use an ASR system to test for the intel-
ligibility of the enhanced speech. For this, we use the Google
Speech Recognition interface, and report the Word Error Rates
(WER) on the clean, mixed and generated audio samples.

3.4. Training
We pre-train the spatio-temporal visual front-end on a word-
level lip reading task, following [33]. This proceeds in two
stages: first, training on the LRW dataset [31], which covers
near-frontal poses; and then on an internal multi-view dataset of
a similar size. To accelerate the subsequent training process, we
freeze the front-end, pre-compute and save the visual features
for all the videos, and also compute and save the magnitude and
phase spectrograms for both the clean and noise audio.

Training takes place in three phases: first, the magnitude
prediction sub-network is trained, following a curriculum which
starts with high SNR inputs (i.e. only one additional speaker)
and then progressively moves to more challenging examples
with a greater number of speakers; second, the magnitude sub-
network is frozen, and only the phase network is trained ; fi-
nally, the whole network is fine-tuned end-to-end. We did not
experiment with the hyperparameter balancing the magnitude
and phase loss terms, but set it to λ = 1.

To generate training examples we first select a reference
pair of visual and audio features (vr , ar) by randomly sampling
a 60-frame clean segment, making sure that the audio and visual
features correspond and are correctly aligned. We then sample
N noise spectrograms xn, n ∈ [1, N ], and mix them with the
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SIR (dB) SDR (dB) PESQ WER (%)

Mag
Φ

# Spk. 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

Mix Mix − − − − -0.3 -3.4 -5.4 -6.7 1.73 1.47 1.37 1.21 93.1 99.5 99.9 100
Pr GT 10.8 13.2 13.8 13.7 15.7 13.0 10.8 9.5 3.41 3.05 2.93 2.80 9.4 12.0 16.7 21.5
Pr GL 0.9 2.5 3.6 4.0 -2.9 -2.8 -2.9 -2.7 2.98 2.71 2.52 2.35 10.5 13.7 20.3 27.8
Pr Mix 1.6 2.7 2.5 2.0 10.5 7.8 5.9 4.8 3.02 2.70 2.49 2.33 10.8 14.9 22.0 31.9
Pr Pr 3.9 5.4 5.4 4.8 11.8 9.1 7.1 5.8 3.08 2.79 2.56 2.43 9.7 13.8 20.3 28.9

Table 1: Evaluation of speech enhancement performance on the LRS2 dataset, for scenarios with different number of speakers (denoted by # Spk).
The magnitude (Mag) and phase (Φ) columns specify if the spectrograms used for the reconstructions are predicted or are obtained directly from the
mixed or ground truth signal: Mix: Mixed; Pr: Predicted; GT: Ground Truth; GL: Griffin-Lim; SIR: Signal to Interference Ratio; SDR: Signal to
Distortion Ratio; PESQ: Perceptual Evaluation of Speech Quality, varies between 0 and 4.5; (higher is better for all three); WER: Word Error Rate
from off-the-shelf ASR system (lower is better). The WER on the ground truth signal is 8.8%.

reference spectrogram in the frequency domain by summing up
the complex spectra, obtaining the mixed spectrogram am. This
is a natural way to augment our training data since a different
combination of noisy audio signals is sampled every time. Be-
fore adding in the noise samples, we normalize their energy to
have the reference signal’s one: am = ar +

∑
n
rms(xr)
rms(an)

an.

3.5. Results
LRS2. We summarize our results on the test set of the LRS2
dataset in Table 1. The performance under the different met-
rics is listed for the following signal types: The mixed signal
which serves as a baseline, and the reconstructions that are ob-
tained using the magnitudes predicted by our network and either
the ground truth phase, the phase approximated with the Griffin
Lim algorithm, the mixed signal phase or the predicted phase.
The signal reconstructed from predicted magnitudes and phases
is what we consider the final output of our network.

The evaluation when using the ground truth phase is in-
cluded as an upper bound to the phase prediction. As can be
seen from all measures on the mixed signal, the task becomes
increasingly difficult as more speakers are added. In general
both the BSS metrics and PESQ correlate well with our obser-
vations. It is interesting to note that while more speakers are
added, the SIR stays roughly the same, however more overall
distortion is introduced. The model is very effective in sup-
pressing cross-talk in the output, however it does so with a
trade-off in the quality of the target voice.

The phase predicted by our network performs better than
the mixed phase. Even though the improvement is relatively
small in numbers, the difference in speech quality is noticeable
as the “robotic” effect of having off-sync harmonics is signifi-
cantly reduced. We encourage the reader to listen to the samples
in the supplementary material, where those differences can be
understood better. However, the considerable gap with the per-
formance of the ground truth phase shows that there is much
room for improvement in the phase network.

The transcription results using the Google ASR are also in
line with these findings. In particular, it is noteworthy that our
model is able to generate highly intelligible results from noisy
audio that is incomprehensible by a human or an ASR system.

Although the content is mainly carried by the magnitude,
we see major improvement in terms of WER when using a better
phase approximation. It is interesting to note that, although the
phase obtained using the Griffin Lim (GL) algorithm achieves
significantly worse performance on the objective measures, it
demonstrates relatively strong WER results, even slightly sur-
passing the predicted phase by a small margin in the case of 5
simultaneous speakers.
VoxCeleb2. In order to explicitly assess whether our model can
generalize to speakers unseen during training, we also fine-tune
and test on VoxCeleb2, using train and test sets that are disjoint
in terms of speaker identities. The results are summarized in
Table 2, where we showcase an experiment for the 3-speaker

scenario. We additionally include evaluation using the SAR and
STOI metrics. Overall the performance is comparable to, but
slightly worse than, on the LRS2 dataset – which is in line with
the qualitative performance. This can be attributed to the visual
features not being fine-tuned, and the presence of a lot of other
background noise in VoxCeleb2. The results confirm that the
method can generalize to unseen (and unheard) speakers.

The last column of the table shows the PESQ evaluation for
the original model trained on LRS2, without any fine-tuning on
VoxCeleb. The performance is worse than that of the fine-tuned
model, however it clearly works. Since LRS2 is constrained
to English speakers only, but VoxCeleb2 contains multiple lan-
guages, this demonstrates that the model learns to generalise to
languages not seen during training.

Mag Φ SIR SAR SDR STOI PESQ PESQ-NF

Mix Mix - -1.59 -2.99 0.34 1.58 1.58
Pr GT 11.43 16.41 10.30 0.77 3.02 2.79
Pr GL 2.05 3.49 -2.42 0.65 2.59 2.39
Pr Mix 1.72 13.54 6.71 0.65 2.59 2.41
Pr Pr 5.02 13.77 7.91 0.67 2.67 2.45

Table 2: Evaluation of speech enhancement performance on the Vox-
Celeb2 dataset, for 3 simultaneous speakers, Notations are described
in the caption of Table 1. Additional metrics used here: SAR: Signal to
Artefacts Ratio; STOI: Short-Time Objective Intelligibility, varies be-
tween 0 and 1; PESQ-NF: PESQ score with a model that has not been
fine-tuned on VoxCeleb; Higher is better for all.

3.6. Discussion
Phase refinement. Training our whole network end-to-end de-
creases the phase loss and this might suggest that the inclusion
of visual features also improves the phase enhancement. How-
ever, a thorough investigation to determine if, and to what ex-
tent, this is true is left to future work.
AV synchronization. Our method is very sensitive to the tem-
poral alignment between the voice and the video. We use Sync-
Net for the alignment, but since the method can fail under ex-
treme noise, we need to build some invariance in the model. In
future work this will be incorporated in the model.

4. Conclusion
In this paper, we have proposed a method to separate the speech
signal of a target speaker from background noise and other
speakers using visual information from the target speaker’s lips.
The deep network produces realistic speech segments by pre-
dicting both the phase and the magnitude of the target signal;
we have also demonstrated that the network is able to generate
intelligible speech from very noisy audio segments recorded in
unconstrained ‘in the wild’ environments.
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