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Abstract
Automatic assessment of depression from speech signals is af-
fected by variabilities in acoustic content and speakers. In this
study, we focused on addressing these variabilities. We used
a database comprised of recordings of interviews from a large
number of female speakers: 735 individuals suffering from de-
pressive (dysthymia and major depression) and anxiety disor-
ders (generalized anxiety disorder, panic disorder with or with-
out agoraphobia) and 953 healthy individuals. Leveraging this
unique and extensive database, we built an i-vector framework.
In order to capture various aspects of speech signals, we used
voice quality features in addition to conventional cepstral fea-
tures. The features (F0, F1, F2, F3, H1-H2, H2-H4, H4-H2k,
A1, A2, A3, and CPP) were inspired by a psychoacoustic model
of voice quality [1]. An i-vector-based system using Mel Fre-
quency Cepstral Coefficients (MFCCs) and another using voice
quality features was developed. Voice quality features per-
formed as well as MFCCs. A score-level fusion was then used
to combine these two systems, resulting in a 6% relative im-
provement in accuracy in comparison with the i-vector system
based on MFCCs alone. The system was robust even when the
duration of the utterances was shortened to 10 seconds.
Index Terms: depression detection, computational paralinguis-
tics, voice quality features, i-vectors

1. Introduction
The deployment of automatic assessment systems would trans-
form the ability to diagnose, treat and prevent major depressive
disorders (MDD). MDD affects almost one in five women and
one in twelve men in their lifetime [2] and was recently rec-
ognized as the world’s leading cause of disability [3]. Yet cur-
rent pharmacological [4] and psychological therapies [5] pro-
vide limited efficacy, and only about half of those suffering
from MDD are identified and offered treatment [6]. An obstacle
preventing effective use of existing therapies, and impeding the
discovery of better ones, is the difficulty of diagnosing MDD.
Diagnosis is still made on the basis of a clinical interview and
mental status examination, a method with relatively low relia-
bility; screening instruments are hampered by poor specificity
and sensitivity and no reliable biomarkers exist. Further com-
plicating the problem, MDD remains a syndromal diagnosis,
leaving open the possibility that it consists of a number of dif-
ferent conditions, each with different etiologic pathways and
treatment responses; indeed, there is mounting evidence that
MDD is not monolithic [7]. Early intervention before the onset
of severe symptoms can alleviate MDD’s worst consequences
including suicide.

One possible source of information for improving diagno-
sis, and recognizing subtypes, is the characterization of MDD
from a person’s speech. Changes in the way people talk reflect

alterations in mood, but attempts to use this information have
not so far been clinically useful. Depression can be character-
ized by prosodic abnormalities and/or articulatory and phonetic
errors [8]. There are links between depression and alterations in
the dynamics of vocal tract resonances or formants [9, 10] and
there have been studies using prosodic [11], voice quality [12],
and spectral features [13, 14].

In recent years, speech technology has been used to per-
form automatic identification of depression. Some studies in-
vestigated using single phoneme or word-level utterances for
recognizing depression [15, 16]. A few studies investigate non-
speech patterns, diadochokinesis patterns or nonsense words
[11] and other studies have used either read speech [17, 18] or
spontaneous speech [17, 16, 15].

Our work focuses on building algorithms to enable reliable
automated detection of MDD from speech signals, with a spe-
cial focus on voice quality features.

1.1. Related Work on Voice Quality and i-vectors

There have been several studies showing that voice quality con-
tains information about the mental state of a person [19, 8]. In
depression detection, commonly used voice quality measures
include jitter, shimmer, the small cycle-to-cycle variations in
glottal pulse amplitude in voiced regions, harmonic-to-noise ra-
tio, and the ratio of harmonics to inharmonic components [19].
These features are related to vocal fold vibration, which is in-
fluenced by vocal fold tension and subglottal pressure.

Voice quality features have not been effectively applied to
automatic detection of depression. One of the main reasons
being the definition of the term ‘voice quality’. Voice qual-
ity has been represented using impressionistic labels, such as
tense, harsh, and breathy which have different interpretations
based on the researcher. Moreover, it is difficult to robustly
extract voice quality features from the speech signal. One tech-
nique involves inverse-filtering to identify voice source char-
acteristics by removing the effects of the vocal tract transfer
function [20]. Avoiding the difficult inverse-filtering approach,
other techniques have been proposed to estimate voice source
characteristics. Jitter and shimmer are two of the most popular
features in this direction [8] but it is unclear how they relate to
the perception of voice quality.

Speaker and phonetic variability are shown to degrade the
performance of depression detection systems [13, 21]. There
have been studies using Gaussian Mixture Model (GMM) based
supervectors, and Nuisance Attribute Projection (NAP) for
Kullback-Leibler (KL-means) supervectors to reduce effects
due to phonetic variability [13]. Recently, the total variability
framework was introduced as an effective approach to capture
the important variabilities in a low dimensional space [22]. Us-
ing this framework, the i-vector approach was developed [23]
which has become the state-of-the-art system for speaker veri-
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fication. But little effort has been made in using the i-vectors
for a depression detection task. The main reason is the lack
of large databases to learn the Universal Background Model
(UBM) and the total variability matrix for i-vector extraction.
Some studies have worked around this problem and applied i-
vectors for this task. Oversampling of the data is done in [24]
to extract i-vectors for depression detection. Paula et al. in
[25] perform experiments using MFCCs, Shifted-Delta-Cepstra
(SDC), Rasta Perceptual Linear Prediction Coefficients (PLP),
and spectral and prosodic features as input to an i-vector sys-
tem with feature concatenation for estimating depression level.
Further, experiments in a speaker independent setup are shown
in [26]. A multimodal setup using video features as well with
MFCC based i-vectors is described in [27]. These studies have
shown the potential of i-vectors in improving the depression de-
tection performance.

The rest of the paper is organized as follows. Sections 2
and 3 describe the database and acoustic features used in this
paper, followed by Section 4 which describes the system used
for depression identification. Section 5 presents the results and
a discussion, while Section 6 concludes the paper.

2. Database
The depression database used in this study was developed as
a part of the Experimental Research on Genetic Epidemiology
(CONVERGE) study [28]. The CONVERGE study was de-
signed for a genome-wide association of major depression dis-
orders and thus focused on a few cases with increased genetic
risk for MDD. In order to obtain a more genetically homo-
geneous sample only women were recruited to the study (the
genetic correlation between males and females for depression
is approximately 0.6)[29]. Each subject was interviewed by
a trained interviewer assisted by a computerized assessment.
The diagnoses of depressive (dysthymia and MDD) and anxiety
disorders (generalized anxiety disorder - GAD, panic disorder
with or without agoraphobia) were made with the Composite In-
ternational Diagnostic Interview (Chinese version) [30], which
classifies diagnoses according to the Diagnostic and Statistical
Manual of Mental Disorders fourth edition (DSM-IV) criteria.

The database includes recordings of the interviews from
735 individuals classified as suffering from MDD and 953
healthy individuals. The database is in Mandarin. All the audio
recordings were collected with a sampling rate of 16kHz. There
are a total of 52 hours and 28 minutes of data. A large degree
of phonetic and content variability characterize this database.

3. Acoustic Features
3.1. ComParE 2016 Acoustic Feature Set

The ComParE 2016 feature set has been used in paralinguis-
tics analysis [31] and in previous depression research [27, 32].
This set consists of F0, energy, spectral, cepstral coefficients
(MFCCs) and voicing related frame-level features which are
referred to as low-level descriptors (LLDs). They also in-
clude zero crossing rate, jitter, shimmer, harmonic-to-noise ra-
tio (HNR), spectral harmonicity and psychoacoustic spectral
sharpness. In total, this feature set contains 6373 static fea-
tures resulting from the computation of various functionals over
low-level descriptor contours. These functionals are statistical,
polynomial regression coefficients and transformations on the
low-level descriptors. We used the TUMs open-source openS-
MILE system to extract the ComParE16 features[33] .

3.2. Mel Frequency Cepstral Coefficients (MFCCs)

Mel Frequency Cepstral Coefficient (MFCCs) were extracted
with a window size of 25 ms, a window shift of 10 ms, a pre-
emphasis filter with coefficient 0.97, and a sinusoidal lifter with
coefficient 22. A filter bank with 23 filters was used and 13
coefficients were extracted. Utterances were downsampled to 8
kHz before feature extraction. We also used the first and second
derivatives of MFCCs.

3.3. Voice Quality Features (VQual)

Based on extensive studies on the patterns of variability across
speakers in source spectral shapes and glottal pulse shapes [34],
a spectral model to represent the voice source contribution to
perceived voice quality has been developed [35]. The model pa-
rameters include the fundamental frequency (F0), harmonic-to-
noise ratios, and difference in harmonic amplitudes H1-H2, H2-
H4, H4-H2k where the amplitudes of first, second, and fourth
harmonics, and the harmonic nearest to 2 kHz as H1, H2, H4,
and H2k. This model is perceptually valid in that listeners are
sensitive to the parameters of the model. This set of parameters
account for perceived voice quality (e.g., [36, 37, 38, 39]).

Inspired by this model, a feature set was developed for auto-
matic speaker verification applications. The feature set, denoted
as VQual, comprised of F0, first three formants (F1, F2, F3),
H1-H2, H2-H4, H4-H2k, formant amplitudes A1, A2, A3 and
cepstral peak prominence (CPP, [40]). The formants F1, F2, and
F3 were added to capture the variation in vowel quality which
differs substantially across (and occasionally within) speakers.
CPP, a measure of signal periodicity, replaced the harmonic-
to-noise ratios. This set of features was effectively applied to
automatic speaker verification [41, 1]. The features were ex-
tracted every 10ms using VoiceSauce software [42]. We also
added the features’ first and second derivatives. Even though
the feature set was originally developed to capture speaker iden-
tity, we expect this feature set to provide valuable information
for automatic depression detection as well.

4. System Description
4.1. Gaussian Mixture Models for Classification

To model frame-level features we used Gaussian Mixture Mod-
els (GMMs). We trained GMMs for both the depressed and
non-depressed cases i. e., the Expectation Maximization algo-
rithm is used to cluster the data. After obtaining the GMMs, we
used a maximum likelihood estimator to obtain the similarity of
each test utterance to either class.

4.2. Total Variability Modeling

In the total variability space, the Universal Background Gaus-
sian Mixture Model (UBM) which represents the feature distri-
bution of the acoustic space, is adapted to a set of given speech
frames based on the eigenvoice adaptation technique [43] in
order to estimate utterance-dependent GMM parameters. The
eigenvoice adaptation technique operates on the assumption that
all the pertinent variability is captured by a low rank rectangu-
lar matrix T named the total variability matrix. The i-vector
extraction can be represented as follows:

M = m+ Tv (1)

where m is the mean super-vector of the UBM. M is the mean
centered super-vector of the speech utterance derived using the

1677



0th and 1st order Baum-Welch statistics. v is the i-vector the
representation of a speech utterance.

In this work, we consider binary classification of classes:
depressed or non-depressed. We followed the approach de-
scribed in [23] to extract the i-vectors considering these two
classes.

4.3. Logistic Regression

Using i-vectors, we performed classification with logistic re-
gression [44]. We learn the regression coefficients from train-
ing data by maximizing the log likelihood. We then applied the
logistic regression algorithm to estimate the probability that a
given utterance belongs to a particular class.

4.4. Fusion of Scores

Since MFCCs and Voice Quality features carry complementary
information we built separate i-vector classification systems us-
ing those features. We then used a score-level (log probability)
fusion approach to combine the results to test for further im-
provements. Here, we linearly combined the scores using the
following equation:

s = αsv + (1− α)sm (2)

where sm and sv correspond to the logistic regression scores
using MFCCs and VQual respectively, α ranging from 0 to 1 is
the coefficient. The scores were scaled to have zero-mean and
unit-variance prior to fusion.

5. Experiments and Results
5.1. The Experimental Setup

The data were split into train and test sets by randomly assign-
ing 70% of the speakers to the train set and 30% to the test set.
After MFCCs and VQual feature extractions, as described in
Section 3, a UBM of 256 mixtures was trained for each feature
set. Followed by total variability matrix calculation, and used it
to extract i-vectors of dimension 600. Since we had an adequate
amount of data available, we trained a UBM using the training
data alone without any data augmentation [24]. The i-vectors
were then classified using a logistic regression model trained
using the i-vectors of the training data. We then linearly added
the scores of MFCCs and VQual feature classifiers to obtain the
score-level fusion results.

For the baseline systems, we trained 256 mixture GMMs.
Thus, we maintained uniformity between the i-vector setup and
the baseline. We also evaluated the performance of the Com-
ParE 2016 setup on the CONVERGE data.

5.2. Results

Results obtained for different classifier setups are summarized
in Table 1. We perform the classification by using the fea-
ture sets individually, followed by using i-vectors for the each
of the feature sets. ComParE16 feature set performed bet-
ter than MFCCs and VQual for classification. It can be seen
that i-vectors improved the accuracies by 26.86%, 29.66% and
7.54% for MFCCs, VQual and ComParE16 features respec-
tively. Thus, proving that i-vectors are able to successfully de-
crease the impact of speaker and phonetic variability in speech.

Also note that VQual i-vectors provided results compara-
ble to MFCC i-vectors, and they improved the performance by
6% (relative) when fused with scores from the MFCC i-vectors

system. Thus, proving our hypothesis that VQual features pro-
vide information complementary to that provided by MFCCs.
In contrast, score fusion did not improve the results in the case
of using features only but rather it worsened it. Note that we
also fused ComParE16 i-vector system with the fused MFCC
and VQual i-vector system. The results remained almost the
same as the fused MFCC and VQual i-vector system. Addition-
ally, we also concatenated MFCC and VQual features and used
them in the i-vector framework. The accuracy from this system
was not on par with the score level fusion system.

It is not always feasible to obtain lengthy speech recordings
from subjects. Hence, we investigated the robustness of the sys-
tem as the length of the input speech is decreased. To do this,
we split the test utterances into smaller segments of 10s, 20s,
30s and 40s and used these segments to perform classification.
Figure 1 depicts the changes in accuracy with test-utterance du-
ration. For these experiments we trained on full segments (1.8
min) and used three different i-vector setups MFCCs, VQual
and score level fusion of MFCCs and VQual. As expected the
overall performance of the classifiers decreased with the de-
crease in the test-utterances duration. But interestingly, we can
see that fusion results continued to outperform the individual
MFCC i-vectors and VQual i-vector systems.

Further, we observe that VQual features when fused with
MFCCs provide a significant improvement. As the duration of
the test utterance decreases this relative improvement increases
from 8% when the complete utterance is provided to 15% when
the test duration is 10s

5.3. Discussion

It is difficult to detect depression using frame-level features. Us-
age of utterance-level information improved the results. This
can be seen in our experiments using i-vectors. Moreover,
this improvement is also due to the normalization in the to-
tal variability space. Thus, decreasing the impact of speaker
and phonetic variability on system performance. Note that even
though, the ComParE16 features include across utterance statis-
tics, the performance improvement is not as much as using i-
vector framework.

Combining the MFCC and VQual features into a single
model by concatenation did not perform as well as the score
level fusion approach. So, we used score-level fusion for our
further experiments.

As expected, both MFCCs and VQual features performed
worse as test utterances became shorter. But, the VQual fea-
tures were able to improve the performance of the system
through score fusion by providing complementary information
to MFCCs. We can continue to detect depression with an ac-
curacy of 77% even when the test utterances were 10 seconds
long and the accuracy is as high as 95% when the test utterances
were 1.8 minutes long.

6. Conclusion
This study proposed the use of voice quality features (VQual),
which account for perceived voice quality, for depression de-
tection. We used the VQual feature set in combination with
MFCCs at the score-level to obtain improvement over each sys-
tem. We showed improved performance when i-vectors are used
for the depression detection, and discussed the robustness of our
setup as the duration of the test utterance decreased.

Future work will include using auto encoders [45] to learn
the most effective features for detecting depression. Addition-
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Table 1: Results on depression detection using different feature sets with and without the i-vector framework. Boldface indicate the
numbers which are the best among all the experiments

Features Precision Recall F1-score Accuracy

MFCCs 0.4070 0.9206 0.5645 0.6272
VQual 0.3614 0.8692 0.5105 0.5792
ComParE16 0.8016 0.8311 0.8161 0.8064
Score Fusion (MFCCs & VQual) 0.3930 0.9346 0.5533 0.6252
MFCC i-vectors 0.8281 0.9860 0.9002 0.8958
VQual i-vectors 0.8807 0.8692 0.8749 0.8758
ComParE16 i-vectors 0.9018 0.8551 0.8778 0.8818
MFCC & VQual i-vectors 0.90175 0.91589 0.90877 0.90782
Score Fusion (MFCC & VQual) i-vectors 0.9263 0.9766 0.9508 0.9479
Score Fusion (MFCC, VQual & ComParE16) i-vectors 0.9193 0.98131 0.94929 0.94589

10s 20s 30s 40s Full(1.8min)

Test utterance duration

0.5
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1

A
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MFCCs i-vectors

VQual i-vectors

MFCCs & VQual i-vectors

Figure 1: Effect of test utterance duration on the performance of the system

ally, as the CONVERGE data is large enough one more inter-
esting analysis would be using deep neural networks to perform
the detection.
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