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Abstract
Entrainment is a known adaptation mechanism that causes

interaction participants to adapt or synchronize their acoustic

characteristics. Understanding how interlocutors tend to adapt

to each other’s speaking style through entrainment involves

measuring a range of acoustic features and comparing those via

multiple signal comparison methods. In this work, we present a

turn-level distance measure obtained in an unsupervised manner

using a Deep Neural Network (DNN) model, which we call

Neural Entrainment Distance (NED). This metric establishes

a framework that learns an embedding from the population-

wide entrainment in an unlabeled training corpus. We use the

framework for a set of acoustic features and validate themeasure

experimentally by showing its efficacy in distinguishing real

conversations from fake ones created by randomly shuffling

speaker turns. Moreover, we show real world evidence of the

validity of the proposed measure. We find that high value of

NED is associatedwith high ratings of emotional bond in suicide

assessment interviews, which is consistent with prior studies.

Index Terms: entrainment, deep neural network, unsupervised

learning, embeddings, behavioral analysis, conversational

speech

1. Introduction

Vocal entrainment is an established social adaptation

mechanism. It can be loosely defined as one speaker’s

spontaneous adaptation to the speaking style of the other

speaker. Entrainment is a fairly complex multifaceted process

and closely associated with many other mechanisms such as

coordination, synchrony, convergence etc. While there are

various aspects and levels of entrainment [1], there is also

a general agreement that entrainment is a sign of positive

behavior towards the other speaker [2–4]. High degree of vocal

entrainment has been associated with various interpersonal

behavioral attributes, such as high empathy [5], more agreement

and less blame towards the partner and positive outcomes in

couple therapy [6], and high emotional bond [7]. A good

understanding of entrainment provides insights to various

interpersonal behaviors and facilitates the recognition and

estimation of these behaviors in the realm of Behavioral Signal

Processing [8, 9]. Moreover, it also contributes to the modeling

and development of ‘human-like’ spoken dialog systems or

conversational agents.

Unfortunately, quantifying entrainment has always been a

challenging problem. There is a scarcity of reliable labeled

speech databases on entrainment, possibly due to the subjective

and diverse nature of its definition. This makes it difficult

to capture entrainment using supervised models, unlike many

other behaviors. Early studies on entrainment relied on highly

subjective and context-dependent manual observation coding

for measuring entrainment. The objective methods based

on extracted speech features employed classical synchrony

measures such as Pearson’s correlation [1] and traditional

(linear) time series analysis techniques [10]. Lee et al. [5, 11]

proposed a measure based on PCA representation of prosody

and MFCC features of consecutive turns. Most of these

approaches assume a linear relationship between features of

consecutive speaker turns which is not necessarily true, given

the complex nature of entrainment. For example, the effect of

rising pitch or energy can potentially have a nonlinear influence

across speakers.

Recently, various complexity measures (such as largest

Lyapunov exponent) of feature streams based on nonlinear

dynamical systems modeling showed promising results in

capturing entrainment [6, 7]. A limitation of this modeling,

however, is the assumption of the short-term stationary or

slowly varying nature of the features. While this can be

reasonable for global or session-level complexity, the measure

is not very meaningful capturing turn-level or local entrainment.

Nonlinear dynamical measures also suffer from scalability to

a multidimensional feature set, including spectral coefficients

such as MFCCs. Further, all of the above metrics are

knowledge-driven and do not exploit the vast amount of

information that can be gained from existing interactions.

A more holistic approach is to capture entrainment in

consecutive speaker turns through a more robust nonlinear

function. Conceptually speaking, such a formulation of

entrainment is closely related to the problem of learning a

transfer function which maps vocal patterns of one speaker turn

to the next. A compelling choice to nonlinearly approximate

the transfer function would be to employ Deep Neural

Networks (DNNs). This is supported by recent promising

applications of deep learning models, both in supervised and

unsupervised paradigms, in modeling and classification of

emotions and behaviors from speech. For example in [12] the

authors learned, in an unsupervised manner, a latent embedding

towards identifying behavior in out-of-domain tasks. Similarly

in [13, 14] the authors employ Neural Predictive Coding to

derive embeddings that link to speaker characteristics in an

unsupervised manner.

We propose an unsupervised training framework to

contextually learn the transfer function that ties the two

speakers. The learned bottleneck embedding contains cross-

speaker information closely related to entrainment. We define

a distance measure between the consecutive speaker turns

represented in the bottleneck feature embedding space. We call

this metric the Neural Entrainment Distance (NED).

Towards this modeling approach we use features that have

already been established as useful for entrainment. Themajority

of research [1, 6, 7, 11, 15] focused on prosodic features like
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pitch, energy, and speech rate. Others also analyzed entrainment

in spectral and voice quality features [5, 11]. Unlike classical

nonlinear measures, we jointly learn from a multidimensional

feature set comprising of prosodic, spectral, and voice quality

features.

We then experimentally investigate the validity and

effectiveness of the NED measure in association with

interpersonal behavior.

2. Datasets

We use two datasets in this work: the training is done on the

Fisher Corpus English Part 1 (LDC2004S13) [16] and testing

on the Suicide Risk Assessment corpus [17], along with Fisher.

• Fisher Corpus English Part 1: It consists of

spontaneous telephonic dyadic conversations between

native English speakers. There are 5850 such

conversations, each lasting up to 10 minutes. The

manual transcripts of the corpus contain time-stamps of

speaker turn boundaries as well as boundaries of pauses

within a turn.

• Suicide Risk Assessment corpus: This dataset contains

recorded conversations of active duty military personnel

with their therapist during suicide risk assessment

sessions. The participants were suicidal patients who

either had attempted suicide or had suicidal thoughts

prior to the sessions. The subset of the corpus

employed in the current work included therapist-patient

interviews of 54 subjects, each session ranging from

10 minutes to 1 hour. They were asked questions

related to their personal history, reasons leading to their

suicidal ideations, elaboration of their reasons for living

etc. Immediately after the interview sessions, the patient

was asked to provide with a self-reported score for

perceived emotional bond, an attribute which entails

the therapist’s empathy for the patient and the patient’s

feeling of trust towards them. It was rated on a scale from

1 to 10.

3. Modeling of Neural Entrainment

Distance

3.1. Preprocessing

A number of audio preprocessing steps are required in the

entrainment framework for obtaining boundaries of relevant

segments of audio from consecutive turns. First, we perform

voice activity detection (VAD) to identify the speech regions.

Following this, speaker diarization is performed in order to

distinguish speech segments spoken by different speakers.

However, our training dataset, the Fisher corpus also contains

transcripts with speaker turn boundaries as well as timings for

pauses within a turn. Since, these time stamps appeared to be

reasonably accurate, we use them as oracle VAD and diarization.

On the other hand, for the Suicide Risk Assessment corpus, we

perform VAD and diarization on raw audio to obtain the turn

boundaries. Subsequently, we also split a single turn into inter-

pausal units (IPUs) if there is any pause of at least 50 ms present

within the turn. For the purpose of capturing entrainment-

related information, we only consider the initial and the final

IPU of every turn. This is done based on the hypothesis that

during a turn-taking, entrainment is mostly prominent between

the most recent IPU of previous speaker’s turn and the first IPU

of the next speaker’s turn [1].

3.2. Feature Extraction

We extract 38 different acoustic features from the segments

(IPUs) of our interest. The extracted feature set includes 4

prosody features (pitch, energy and their first order deltas), 31

spectral features (15 MFCCs, 8 MFBs, 8 LSFs) and 3 voice

quality features (shimmer and 2 variants of jitter). We found in

our early analysis that derivatives of spectral and voice quality

features do not seem to contribute significantly to entrainment1

and hence we do include them for the NED model. The feature

extraction is performed with a Hamming window of 25 ms

width and 10 ms shift using the OpenSMILE toolkit [18]. For

pitch, we perform an additional post-processing by applying a

median-filter based smoothing technique (with a window size of

5 frames) as pitch extraction is not very robust and often prone

to errors, such as halving or doubling errors. We also perform

z-score normalization of the features across the whole session,

except for pitch and energy features, which are normalized by

dividing them by their respective means.

Feature Extraction

Speaker 1 Speaker 2

functionals functionals

Encoder Decoder

Feature Extraction

DNN DNN

Figure 1: An overview of unsupervised training of the model

3.3. Turn-level Features

We propose to calculate NED as directional entrainment-related

measure from speaker 1 to speaker 2 for a change of turn as

shown in Figure 1. The segments of interest in this case are

the final IPU of speaker 1’s turn and the initial IPU of the

subsequent turn by speaker 2, marked by the bounding boxes

in the figure. As turn-level features, we compute six statistical

functionals over all frames in those two IPUs, generating two

sets of functionals of features for each pair of turns. The

functionals we compute are as follows: mean, median, standard

deviation, 1st percentile, 99th percentile and range between 99th

and 1st percentile. Thus we obtain 38 × 6 = 228 turn-level

features from each IPU representing the turn. Let us denote the

turn-level feature vector of the final IPU of speaker 1 and the

initial IPU of speaker 2 as x1 and x2, respectively, for further

discussion in the paper.

3.4. Modeling with Neural Network

Most work in the entrainment literature directly computes

a measure between x1 and x2 (such as correlation [1]) or

their lower-dimensional representations [11]. However, one

conceptual limitation of all these approaches is that turn-level

1These features showed very low correlation (ρ < 0.05) across
consecutive turns in our initial analysis
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features x1 and x2 do not only contain the underlying acoustic

information that can be entrained across turns, but also speaker-

specific, phonetic and paralinguistic information that is specific

to the corresponding turns and not influenced by the previous

turn (non-entrainable). If we represent those two types of

information as vector embeddings, e and q respectively, we can

model turn-level feature vectors x as a nonlinear function F (·)
over them, i.e., x1 = F (e1, q1) and x2 = F (e2, q2). In this

formulation, the distance between e1 and e2 should be zero in

the hypothetical case of ‘perfect’ entrainment.

Our goal is to approximate the inverse mappings that maps

the feature vector x to entrainment embedding e and ideally to

learn the same from ‘perfect’ or very highly entrained turns.

Unfortunately, in absence of such a dataset, we learn it from

consecutive turns in real data where entrainment is present,

at least to some extent. As shown in Figure 1, we adopt a

feed-forward deep neural network (DNN) as an encoder for this

purpose.

The different components of the model are described below:

1. First we use x1 as the input to the encoder network.

We choose the output of the encoder network, z to be

undercomplete representation of x1, by restricting the

dimensionality of z to be lower than that of x.

2. z is then passed through another feed-forward (z)

network used as decoder to predict x2. The output of the

decoder is denoted as x̂2.

3. Then x̂2 and its reference x2 are compared to obtain the

loss function of the model, L(x2, x̂2).

Even though this deep neural network resembles

autoencoder architectures, it does not reconstruct itself

but rather tries to encode relevant information from one

turn to predict the next turn, parallel to [12–14]. Thus the

bottleneck embedding z can be considered closely related to the

entrainment embedding e mentioned above.

3.5. Unsupervised Training of the Model

In this work, we use two fully connected layers as hidden layers

both in the encoder and decoder network. Batch normalization

layers and Rectified Linear Unit (ReLU) activation layers (in

respective order) are used between fully connected layers in both

of the networks. The dimension of the embedding is chosen to

be 30. The number of neuron units in the hidden layers are:

[ 228→ 128→ 30→ 128→ 228 ]. We use smooth L1 norm, a

variant of L1 norm which is more robust to outliers [19], so that

L(x2, x̂2) = ‖x2−x̂2‖smooth
1 =

N∑

k=1

smoothL1(x2k−x̂2k), (1)

where

smoothL1(d) =

{
0.5d2, if |d| ≤ 1

|d| − 0.5, otherwise
(2)

and N is the dimension of x which is 228 in our case.

For training the network, we choose a subset (80% of all

sessions) of Fisher corpus and use all turn-level feature pairs

(x1, x2). We employ the Adam optimizer [20] and a minibatch

size of 128 for training the network. The validation error is

computed on the validation subset (10%of the data) of the Fisher

corpus and the best model is chosen.

3.6. Neural Entrainment Distance (NED) Measure

After the unsupervised training phase, we use the encoder

network to obtain the embedding representation (z) from any

turn-level feature vector x. To quantify the entrainment from a

turn to the subsequent turn, we extract turn-level feature vectors

from their final and initial IPUs, respectively, denoted as xi and

xj . Next we encode xi and xj using the pretrained encoder

network and obtain zi and zj as the outputs, respectively. Then

we compute a distance measure dNE, which we term Neural

Entrainment Distance (NED), between the two turns by taking

smooth L1 distance zi and zj .

dNE(xi, xj) = ‖zi−zj‖smooth
1 =

M∑

k=1

smoothL1(zik−zjk), (3)

where smoothL1(·) is defined in Equation (2) andM is the

dimensionality of the embedding. Note that even though smooth

L1 distance is symmetric in nature, our distance measure is still

asymmetric because of the directionality in the training of the

neural network model.

4. Experimental Results

We conduct a number of experiments to validate NED as a valid

proxy metric for entrainment.

4.1. Experiment 1: Classification of real vs. fake sessions

We first create a fake session (Sfake) from each real

session (Sreal) by randomly shuffling the speaker turns. Then

we run a simple classification experiment of using the NED

measure to identify the real session from the pair (Sreal, Sfake).

The steps of the experiments are as follows:

1. We compute NED for each (overlapping) pair of

consecutive turns and their average across the session for

both sessions in the pair (Sreal, Sfake).

2. The session with lower NED is inferred to be the real one.

The hypothesis behind this rule is that higher entrainment

is seen across consecutive turns than randomly paired

turns and is well captured through a lower value of

proposed measure.

3. If the inferred real session is indeed the real one, we

consider it to be correctly classified.

We compute classification accuracy averaged over 30 runs (to

account for the randomness in creating the fake session) and

report it in Table 1. The experiment is conducted on two

datasets: a subset (10%) of Fisher corpus set aside as test data

and Suicide corpus. We use a number of baseline measures:

• Baseline 1: smooth L1 distance directly computed

between turn-level features (xi and xj)

• Baseline 2: PCA-based symmetric acoustic similarity

measure by Lee et al. [11]

• Baseline 3: Nonlinear dynamical systems-based

complexity measure [7].

For the baselines, we conduct the classification experiments in a

similar manner. Since Baseline 1 and 2 have multiple measures,

we choose the best performing one for reporting, thus providing

an upper-bound performance. Also, for baseline 2 we choose

the session with higher value of the measure as real, since it

measures similarity.
As we can see in Table 1, our proposed NED measure

achieves higher accuracy than all baselines on the Fisher corpus.

The accuracy of our measure declines in the Suicide corpus
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Measure
Classification accuracy (%)

Fisher corpus Suicide corpus

Baseline 1 72.10 (5.83) 70.44 (6.69)

Baseline 2 92.32 (3.01) 88.12 (5.93)

Baseline 3 90.21 (5.40) 88.54 (5.87)

NED 98.87 (0.97) 91.92 (2.32)

Table 1: Results of Experiment 1: classification accuracy (%)

of real vs. fake sessions (averaged over 30 runs; standard

deviation shown in parentheses)

as compared to the Fisher corpus, which is probably due to

data mismatch as the model was trained on Fisher (mismatch of

acoustics, recording conditions, sampling frequency, interaction

style etc.). However, our measure still performs better than all

baselines on Suicide corpus.

4.2. Experiment 2: Correlation with Emotional Bond

According to prior work, both from domain theory [17] and

from experimental validation [7], a high emotional bond in

patient-therapist interactions in the suicide therapy domain is

associated with more entrainment. In this experiment, we

compute the correlation of the proposed NED measure with the

patient-perceived emotional bond ratings. Since the proposed

measure is asymmetric in nature, we compute the measures for

both patient-to-therapist and therapist-to-patient entrainment.

We also compute the correlation of emotional bond with the

baselines used in Experiment 1. We report Pearson’s correlation

coefficients (ρ) for this experiment in Table 2 along with their

p-values. We test against the null hypothesis H0 that there is

no linear association between emotional bond and the candidate

measure.

Results in Table 2 show that the patient-to-therapist NED is

negatively correlated with emotional bond with high statistical

significance (p < 0.01). This negative sign is consistent

with previous studies as higher distance in acoustic features

indicates lower entrainment. However, the therapist-to-patient

NED does not have a significant correlation with emotional

bond. A possible explanation for this finding is that the

emotional bond is reported by the patient and influenced by

the degree of their perceived therapist-entrainment. Thus,

equipped with an asymmetric measure, we are also able to

identify the latent directionality of the emotional bond metric.

The complexity measure (Baseline 2) also shows statistically

significant correlation, but the value of ρ is lower than that of

the proposed measure.

To analyze the embeddings encoded by our model, we also

compute a t-SNE [21] transformation of the difference of all

Measure
Pearson’s correlation

ρ p-value∗

Baseline 1 −0.1980 0.2031

Baseline 2 0.2480 0.1132

Baseline 3 −0.3815 0.0127

NED-TP −0.1317 0.3999

NED-PT −0.4479 0.0095

Table 2: Correlation between emotional bond and various
measures; TP: therapist-to-patient, PT: patient-to-therapist
∗p < 0.05 indicates statistically significant correlation
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Figure 2: t-SNE plot of difference vector of encoded turn-level

embeddings for sessions with low and high emotional bond

patient-to-therapist turn embedding pairs, denoted as zi − zj in

Equation (3). Figure 2 shows the results of a session with high

emotional bond and another one with low emotional bond (with

values of 7 and 1 respectively) as a 2-dimensional scatter plot.

Visibly there is some separation between the sessions with low

and high emotional bond.

5. Conclusion and Future Work

In this work, a novel deep neural network-based Neural

Entrainment Distance (NED) measure is proposed for capturing

entrainment in conversational speech. The neural network

architecture consisting of an encoder and a decoder is trained

on the Fisher corpus in an unsupervised training framework and

then the measure is defined on the bottleneck embedding. We

show that the proposed measure can distinguish between real

and fake sessions by capturing presence of entrainment in real

sessions. In this way we also validate the natural occurrence

of vocal entrainment in dyadic conversations, well-known in

psychology literature [22–24]. We further show that the

measure for patient-to-therapist direction achieves statistically

significant correlation with their perceived emotional bond. The

proposed measure is asymmetric in nature and can be useful

for analyzing different interpersonal (especially directional)

behaviors in many other applications. Given the benefits shown

by the unsupervised data-driven approach we will employ

Recurrent Neural Networks (RNNs) to better capture temporal

dynamics. We also intend to explore (weakly) supervised

learning of entrainment using the bottleneck embeddings as

features, in presence of session-level annotations.
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