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Abstract

Sequence-to-sequence (Seq2Seq) models with attention have
excelled at tasks which involve generating natural language
sentences such as machine translation, image captioning and
speech recognition. Performance has further been improved
by leveraging unlabeled data, often in the form of a language
model. In this work, we present the Cold Fusion method, which
leverages a pre-trained language model during training, and
show its effectiveness on the speech recognition task. We show
that Seq2Seq models with Cold Fusion are able to better utilize
language information enjoying i) faster convergence and better
generalization, and ii) almost complete transfer to a new domain
while using less than 10% of the labeled training data.

1. Introduction
Sequence-to-sequence (Seq2Seq) [1] models have achieved
state-of-the-art results on many natural language processing
problems including automatic speech recognition [2, 3] and
neural machine translation [4]. With a sufficiently large labeled
dataset, vanilla Seq2Seq can model sequential mapping well,
but it is often augmented with a language model to further im-
prove the fluency of the generated text.

The standard way to integrate language models is to train
the Seq2Seq model and the language model independently and
then combine their outputs to guide beam search [5, 6, 7].

While these approaches have been shown to improve per-
formance over the baseline, they have a few limitations. First,
because the Seq2Seq model is trained to output complete la-
bel sequences without a language model, its decoder learns an
implicit language model from the training labels, taking up a
significant portion of the decoder capacity to learn redundant
information. Second, the residual language model baked into
the Seq2Seq decoder is biased towards the training labels of the
parallel corpus. Thus, in order to adapt to novel domains, the
Seq2Seq model must first learn to discount the implicit knowl-
edge of the language.

In this work, we introduce Cold Fusion to overcome both
these limitations. Cold Fusion encourages the Seq2Seq decoder
to learn to use the external language model during training. This
means that Seq2Seq can naturally leverage potentially limitless
unsupervised text data, making it proficient at adapting to a new
domain. The latter is especially important in practice as the do-
main from which the model is trained can be different from the
real world use case for which it is deployed. In our experiments,
Cold Fusion can almost completely transfer to a new domain for
the speech recognition task with 10 times less data. Addition-
ally, the decoder only needs to learn task relevant information,
and thus trains faster.

2. Background and Related work
A basic Seq2Seq model comprises an encoder that maps an in-
put sequence x = (x1, . . . , xT ) into an intermediate represen-
tation h, and a decoder that in turn generates an output sequence
y = (y1, . . . , yK) from h [8]. The decoder can also attend to a
certain part of the encoder states with an attention mechanism.
For the automatic speech recognition (ASR) task, the Seq2Seq
model is called an acoustic model (AM) and maps a sequence
of spectrogram features extracted from a speech signal to char-
acters.

During inference, we aim to compute the most likely se-
quence ŷ = argmax

y
log p(y|x) where p(y|x) is the probabil-

ity that the task-specific Seq2Seq model assigns to sequence y
given input sequence x. The argmax operation is intractable in
practice so we use a left-to-right beam search algorithm similar
to the one presented in [6].

A standard way to integrate the language model with the
Seq2Seq decoder is to change the inference task to: ŷ =
argmax

y
log p(y|x) + λ log pLM(y), where pLM(y) is the lan-

guage model probability assigned to the label sequence y. [5, 4]
describe several heuristics that can be used to improve this ba-
sic algorithm. We refer to all of these methods collectively as
Shallow Fusion, since pLM is only used during inference.

[7] proposed Deep Fusion for machine translation that
tightens the connection between the decoder and the language
model by combining their states with a parametric gating. In
Deep Fusion, the Seq2Seq model and the language model are
first trained independently and later combined using a learned
gate. The parameters of the gate are trained on a small amount
of data keeping the rest of the model fixed, and allow the gate
to decide how important each of the models are for the current
time step.

The biggest disadvantage with Deep Fusion is that the
task-specific model is trained independently from the language
model. This means that the Seq2Seq decoder needs to learn
a language model from the training data labels, which can be
rather parsimonious compared to the large text corpora avail-
able for language model training. So, the fusion mechanism
should learn to overcome this bias in order to incorporate the
new language information. This also means that a considerable
portion of the decoder capacity is wasted.

3. Cold Fusion
Our proposed Cold Fusion method is largely motivated from
the Deep Fusion idea but with some important differences. The
biggest difference is that in Cold Fusion, the Seq2Seq model is
trained from scratch together with a fixed pre-trained language
model. Because the Seq2Seq model is aware of the language
model throughout training, it learns to use the language model
for language specific information and capture only the relevant
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information conducive to mapping from the source to the target
sequence. This disentanglement can increase the effective ca-
pacity of the model significantly. This effect is demonstrated
empirically in Section 4 where Cold Fusion models perform
well even with a very small decoder.

We also improve on some of the modeling choices of the
fusion mechanism.

1. First, both the Seq2Seq hidden state st and the language
model hidden state sLM

t can be used as inputs to the
gate computation. The task-specific model’s embedding
contains information about the encoder states which al-
lows the fused layer to decide its reliance on the lan-
guage model in case of input uncertainty. For exam-
ple, when the input speech is noisy or a token unseen by
the Seq2Seq model is presented, the fusion mechanism
learns to pay more attention to the language model.

2. Second, we employ fine-grained (FG) gating mechanism
[9]. By using a different gate value for each hidden node
of the language model’s state, we allow for greater flex-
ibility in integrating the language model because the fu-
sion algorithm can choose which aspects of the language
model it needs to emphasize more at each time step.

3. Third, we replace the language model’s hidden state with
the language model probability. The distribution and
dynamics of sLM

t can vary considerably across differ-
ent language models and data. By projecting the token
distribution onto a common embedding space, LMs that
model novel uses of the language can still be integrated
without state discrepancy issues. This also means that
we can train or swap with n-gram LMs during inference.

The Cold Fusion layer works as follows:

hLM
t = DNN(`LM

t ) (1a)

gt = σ(W [st;h
LM
t ] + b) (1b)

sCF
t = [st; gt ◦ hLM

t ] (1c)

rCF
t = DNN(sCF

t ) (1d)

P̂ (yt|x, y<t) = softmax(rCF
t ) (1e)

`LM
t is the logit output of the language model, st is the state

of the task specific model, and sCF
t is the final fused state used

to generate the output. Since logits can have arbitrary offsets,
the maximum value is subtracted off before feeding into the
layer. In (1a), (1d), the DNN can be a deep neural network
with any number of layers. In out experiments, DNN in (1a) is
a linear map. In (1d), we used two affine layers with ReLU non-
linearity in the hidden layer. Disabling the gate in (1c) reduces
this architecture to a vanilla Seq2Seq.

4. Experiments
4.1. Setup

We tested the Cold Fusion method on the speech recognition
task. For language model integration experiments on a sin-
gle domain, we used the publicly available LibriSpeech dataset
[10]. It comprises 960 hours of public domain audio books and
provides a 800-million-word corpus curated from 14500 books.
The language model for this fusion task was one layer of 1536
dimensional gated recurrent units (GRU) [11]. It was trained
on the entire LibriSpeech LM corpus with Adam [12] by mini-
mizing the cross-entropy of predicting the next character given

the past character sequence. This model obtains 2.617 perplex-
ity on the development set annotations of the LibriSpeech ASR
corpus, whereas a 16-gram character LM gets 2.775.

For domain transfer experiments, we collected two data
sets: one based on search queries which served as our source
domain, and another based on movie transcripts which served as
our target domain. For each dataset, we used Amazon Mechan-
ical Turk to collect audio recordings of speakers reading out the
text. The source dataset contains 411,000 utterances (about 650
hours of audio), and the target dataset contains 345,000 utter-
ances (about 676 hours of audio). We held out 2048 utterances
chosen uniformly at random from each domain for evaluation.
The text of the two datasets differ significantly. A character lan-
guage model trained on the source domain gets a perplexity of
2.670 on the source domain and a perplexity of 4.463 on the
target domain indicating the difference between the source and
target domains.

The language model that we used for domain transfer was
trained on about 25 million words. This model contained three
layers of gated recurrent units (GRU) [11] with a hidden state
dimension of 1024. We used the Adam optimizer [12] with a
batch size of 512. The model gets a perplexity of 2.49 on the
source data and 2.325 on the target data.

For the acoustic models, we used the Seq2Seq architecture
with soft attention based on [2]. The encoder consists of 6 bidi-
rectional LSTM (BLSTM) [15] layers each with a dimension of
512 for LibriSpeech experiments and 480 for domain transfer
experiments. We also use max pooling layers with a stride of 2
along the time dimension after the first two BLSTM layers, and
add residual connections [16] for each of the BLSTM layers to
help speed up the training process. The decoder consisted of a
single layer of 960 dimensional gated recurrent unit (GRU) with
a hybrid attention [17]. The final Cold Fusion mechanism had
one dense layer of 256 units followed by ReLU before softmax.

The input sequence consisted of 40 mel-scale filter bank
features. We expanded the datasets with noise augmentation; a
random background noise is added with a 40% probability at a
uniform random SNR between 0 and 15 dB. We did not use any
other form of regularization.

We trained the entire system end-to-end with Adam [12]
with a batch size of 64. The learning rates were tuned sepa-
rately for each model using random search. To stabilize train-
ing early on, the training examples were sorted by increasing
input sequence length in the first epoch [14]. During inference,
we used beam search with a fixed beam size of 128 for all of
our experiments. We used coverage and length penalties as de-
scribed in [18] for improved performance during beam search.
We also used scheduled sampling [19] with a sampling rate of
0.2 which was kept fixed throughout training.

4.2. Improved Generalization

Leveraging a language model that achieves a low perplexity on
the distribution of interest should directly mean an improved
WER for the ASR task. In this section, we compare how the
different fusion methods fare in achieving this effect on Lib-
riSpeech.

We first trained a baseline attention model that has the same
architecture as described in setup with 512 hidden state dimen-
sions for all recurrent cells. As shown in Table 1, this already
obtains competitive word error rates on various test sets, and is
comparable to Wav2Letter [13] with the power spectrum input
features like ours and shallow fusion decoding with a 4-gram
word language model. This suggests that the attention decoder
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Model LibriSpeech Test-Clean LibriSpeech Test-Other Target Domain Test
CER WER CER WER CER WER

Wav2Letter + Shallow Fusion
MFCC 6.9% 7.2%
Power Spectrum 9.1% 9.4%
Raw Wave 10.6% 10.1%

Baseline Attention 4.47% 8.94% 11.57% 21.52% 20.06% 35.35%
Baseline + Deep Fusion 5.01% 9.17% 12.67% 21.48% 22.07% 35.70%
Baseline + Cold Fusion 3.87% 7.47% 9.28% 17.05% 18.29% 31.88%

Table 1: Results from models trained on the publicly available Librispeech data. Results from the Wav2Letter model [13] are presented
for reference

Model Train Domain Source Domain Test Target Domain Test
CER WER CER WER Domain Gap

Baseline CTC Model
+ Shallow Fusion Source 8.38% 14.85% 18.92% 47.46%

Baseline Attention Model Source 7.54% 14.68% 23.02% 43.52% 100%
Baseline Attention Model Target 8.84% 17.61% 0%

Baseline + Deep Fusion Source 7.64% 13.92% 22.14% 37.45% 76.57%
+ sAM in gate Source 7.61% 13.92% 21.07% 37.9% 78.31%
+ Fine-Grained Gating Source 7.47% 13.61% 20.29% 36.69% 73.64%
+ ReLU layer Source 7.50% 13.54% 21.18% 38.00% 78.70%

Baseline + Cold Fusion
+ sAM in gate Source 7.25% 13.88% 15.63% 30.71% 50.56%
+ Fine-Grained Gating Source 6.14% 12.08% 14.79% 30.00% 47.82%
+ ReLU layer Source 5.82% 11.52% 14.89% 30.15% 48.40%
+ Probability Projection Source 5.94% 11.87% 13.72% 27.50% 38.17%

Table 2: Speech recognition results for the various models discussed in the paper. The CTC model is based on Deep Speech 2 [14]
architecture.

internalized a decent language model of the LibriSpeech ASR
corpus.

When the baseline decoder is augmented with a Lib-
riSpeech neural language model via Deep Fusion, test results
slightly improve in noisy settings as one would expect from the
gating mechanism favoring language information at times of in-
put uncertainty. But, Deep Fusion models perform worse on the
clean test set than vanilla attention. Learning to first discount
the inherent bias of the ASR attention decoder is challenging
when both the attention decoder and LM decoder weights are
fixed and a scalar gate is used to weigh the language model.
Additional information isn’t utilized effectively.

With Cold Fusion, results improve 10 to 20% relatively
across all test sets including the out-of-domain read movie dia-
log data set (final column in Table 1). By allowing the attention
decoder and a more expressive fusion layer to learn to interact
with each other during training, Seq2Seq can make better use
of the language model for the end task.

In addition to improved generalization performance, the
Cold Fusion model also converges 3× faster than the baseline
Seq2Seq model to reach the same loss reducing training time
considerably (see Figure 1).

4.3. Improved Domain Transfer

Swapping the language model is not possible with Deep Fusion
because of the state discrepancy issue motivated in Section 3.

All fusion models were therefore trained and evaluated with the
same language model that achieved a low perplexity on both
source and target domains. This way, we can measure improve-
ments in transfer capability over Deep Fusion due to the training
and architectural changes.

Table 2 compares the performance of Deep Fusion and Cold
Fusion on the source and target held-out sets. Deep Fusion has a
bigger effect on both domains than on LibriSpeech data because
these acoustic models were trained on much less data. However,
Cold Fusion continues to consistently outperform the baselines
on both metrics on both domains. For the task of predicting
in-domain, our best model gets a relative improvement of more
than 21% over the baseline and a relative improvement of 15%
over Deep Fusion.

We get even bigger improvements in out-of-domain results.
The baseline attention model that was trained on the source
domain gets a significantly worse WER on the target domain
compared to a similar model trained directly on the target do-
main. The goal of domain adaptation is to bridge the gap be-
tween these numbers. The final column in Table 2 shows the
remaining gap as a fraction of the difference for each model.
As evident from the table, Deep Fusion decreases the domain
gap to 76.57% while Cold Fusion reduces it down to 38.17%.

We also performed an ablation study to understand the ef-
fects of various architectural changes over the Deep Fusion
layer. Leveraging the language model probability instead of the
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Figure 1: Cross-entropy loss on the search queries dev set for
the baseline model (orange) and the proposed model (purple)
as a function of training iteration. Training with a language
model speeds up convergence considerably.

language model state in the fusion layer substantially helps with
generalization, although this method is somewhat impractical
for word-based models on large-vocabulary tasks. Intuitively,
the character probability space shares the same structure across
different domains unlike the hidden state space.

4.4. Decoder Efficiency

We test whether Cold Fusion does indeed relieve the decoder
of learning an implicit language model. We do so by checking
how a decrease in the decoder capacity affected the error rates.
As evidenced in Table 3, the performance of the Cold Fusion
models degrades gradually as the decoder cell size is decreased
whereas the performance of the attention models deteriorates
abruptly beyond a point. It is remarkable that the Cold Fusion
decoder still outperforms the full attentional decoder with 14×
smaller decoder capacity.

Table 3: Effect of decoder dimension on the model’s perfor-
mance. The performance of Cold Fusion models degrades more
slowly as the decoder size decreases indicating that the effective
task capacity is much larger with fusion.

Model Decoder size Source
CER WER

Attention 64 16.33% 33.98%
128 11.14% 24.35%
256 8.89% 18.74%
960 7.54% 14.68%

Cold Fusion 64 9.47% 17.42%
128 7.96% 15.15%
256 6.71% 13.19%
960 5.82% 11.52%

4.5. Fine-tuning for Domain Adaptation

In the presence of limited data from the target distribution, fine
tuning a model for domain transfer is often a promising ap-
proach. We test how much labeled data from the target dis-
tribution is required for Cold Fusion models to effectively close
the domain adaptation gap.

The same language model from Section 4.3 trained on both
the source and target domains was used for all fine-tuning ex-
periments. We fine-tuned only the fusion mechanism of the best

Table 4: Results for fine-tuning the acoustic model (final row
from Table 2) on subsets of the target training data. ∗The final
row represents an attention model that was trained on all of the
target domain data.

Model Target Target
Data CER WER Domain Gap

Cold Fusion 0% 13.72% 27.50% 38.17%

Cold Fusion 0.6% 11.98% 23.13% 21.30%
+ finetuning 1.2% 11.62% 22.40% 18.49%

2.4% 10.79% 21.05% 13.28%
4.8% 10.46% 20.46% 11.00%
9.5% 10.11% 19.68% 7.99%

Attention∗ 100% 8.84% 17.61% 0.00 %

Cold Fusion model from Table 2 on various amounts of the la-
beled target dataset.

Results are presented in Table 4. With just 0.6% of labeled
data, the domain gap decreases from 38.2% to 21.3%. With less
than 10% of the data, this gap is down to only 8%. Since only
the fusion parameters were fine-tuned, all of the gains we see
in these experiments come from combining the acoustic model
and the language model in a manner more suitable to the target
domain.

5. Conclusion
In this work, we presented a new general Seq2Seq model archi-
tecture where the decoder is trained together with a pre-trained
language model. We study and identify architectural changes
that are vital for the model to fully leverage information from
the language model, and use this to generalize better; by lever-
aging the RNN language model, Cold Fusion reduces word er-
ror rates by up to 18% relative for clean and 20% relative for
noisy speech compared to Deep Fusion on LibriSpeech. Ad-
ditionally, we show that Cold Fusion models can transfer more
easily to new domains, and with only 10% of labeled data nearly
fully transfer to the new domain.
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