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Abstract

Nonnegative Matrix Factorization (NMF) has been successfully
used in speech enhancement. In the training phase NMF pro-
duces speech and noise dictionaries, whose elements are non-
negative, while in the testing phase it estimates a non-negative
activation matrix to express the enhanced speech signal as a
conic combination of those dictionaries. This nonnegativity
property enables us to interpret them as convex polyhedral
cones that lie in the positive orthant. Conic affinity could be
useful when designing NMF-based systems for unseen noise
conditions, which operate by selecting an appropriate noise dic-
tionary amongst a pool of potential candidates. To that end, we
examine two conic affinity measures, one based on cosine sim-
ilarity, while the other is based on euclidean distance from a
point to a cone. Moreover, we construct an algorithm to show
that conic affinity correlates with speech enhancement perfor-
mance metrics.
Index Terms: Non-negative Matrix Factorization, Speech En-
hancement, Convex Optimization, Conic Affinity

1. Introduction
The performance of speech processing applications degrades in
the presence of noise. In the last few years, data availability and
the increased demand of speech applications operating in real
world scenarios resulted in the development of novel denois-
ing methods that are not restricted to specific noise types. Such
schemes include subspace methods with time and spectral con-
straints [1, 2]. More recently, the community has focused its at-
tention on methods based on Deep Neural Networks (DNN) [3],
as well as Nonnegative Matrix Factorization (NMF) [4, 5, 6].

DNN-based methods utilize large sets of speech and a di-
verse noise pool to train the network by pairing noisy frames
with the corresponding clean ones. On the other hand, NMF
methods do not have this extreme data dependency and produce
similar results; however, they require prior information about
the type of noise that corrupts the speech signal. This type of
knowledge cannot always be available, especially if the data are
collected from various sources and under varying noise condi-
tions. In [7] the authors propose some methods to alleviate this
issue.

Broadly speaking, NMF speech enhancement consists of
two phases: training and testing. In the training phase, we
use the magnitude spectrograms to construct spectral represen-
tations of the speech and the noise that corrupts the signal. This
process involves the decomposition of the magnitude spectro-
gram into two non-negative matrices: a dictionary and an acti-
vation matrix. In the testing phase, the speech and noise dic-
tionaries are employed to enhance the noisy signal. This is
achieved by expressing the magnitude of the noisy spectrogram
as a conic combination of speech and noise dictionary atoms

and subsequently disregarding the part of the noisy spectrogram
projected onto the noise dictionary.

Since the dictionaries produced by NMF are nonnegative
they can be interpreted as convex polyhedral cones in the posi-
tive orthant [8], with the dictionary atoms acting as the extreme
rays of the cone1. In fact, the enhanced speech spectrogram is a
conic combination of the speech dictionary atoms.

The geometrical properties of NMF have been exploited to
attack various problems in the literature. For example, in [9]
an NMF modification based on convexity is proposed and ap-
plied in hyperspectral imaging (HSI). The authors in [10] create
the dictionary by constructing the conic hull of the training data
instead of using an objective function to minimize the recon-
struction error [11]. Moreover, given a source, i.e. speech or
noise, Kim et al. created a set of local dictionaries to capture
the source’s manifold.

The motivation behind this work is straightforward; given
a noise pool, and their NMF cone representations, we inves-
tigate conic affinity measures that can be utilized to select an
appropriate cone for the denoising phase. Conic affinity mea-
sures have been successfully applied in various applications,
such as image clustering [12], and studying the dynamics of
large metabolic networks [13], to name a few. We demonstrate
that there exists a relation between conic affinity and speech en-
hancement performance in terms of three metrics: Perceptual
Evaluation of Speech Quality (PESQ) improvements [14], seg-
mental SNR improvements, and Weighted-Slope Spectral dis-
tance (WSS) improvements[15].

The rest of the paper is organized as follows. In Section
2 we give a NMF overview and and provide insights about its
geometrical interpretation. In Section 3, we describe the conic
affinity measures we employ in our study. In Section 4, we
present our experiments and discuss the results, while in Sec-
tion 5 we draw our conclusions and outline some interesting
directions for future work.

2. A Geometric Interpretation of NMF
Given a non-negative matrix V ∈ RK×N , in our case the mag-
nitude of the spectrogram, the goal of NMF is to find non-
negative matrices W ∈ RK×L and H ∈ RL×N such that
V ≈ WH . This approximation is achieved by solving the fol-
lowing optimization problem:

minimize
W,H

D(V ||WH)

subject to W � 0, H � 0

1If the dictionaries created contain non-extreme rays they can be
removed, since the geometry of the cone will remain unchanged. Iden-
tifying non extreme rays can be achieved by a simple feasibility test,
where we test if the ray can be expressed as a conic combination of the
remaining rays.
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where X � 0 means that all the elements of X are nonnegative,
while D(·) is a separable cost function such that:

D(V |WH) =
K∑

k=1

N∑

n=1

d(Vkn||[WH ]kn)

where Aij and [A]ij denote the element of matrix A at row
i and column j. A common choice for the cost function is the
β-divergence [16], defined as:

dβ(x||y) =





1

β(β − 1)
(xβ + (β − 1)yβ + βxy(β−1)) β ∈ R \ {0, 1}

x log
x

y
− x+ y β = 1

x

y
− log

x

y
− 1 β = 0

Notice that when β = 2, the above expression reduces to
the Euclidean distance. In traditional approaches, the updates
for W and H are alternated until convergence; first, the cost
function is optimized for W with H treated as a constant, then
the cost fuction is optimized for H with W fixed. In this work,
we will use the Euclidean distance (β = 2) for the cost function.
The update equations in this case are:

Wkl ←Wkl
[V HT ]kl

[WHHT ]kl

Hln ← Hln
[W TV ]ln

[W TWH ]ln

In the speech enhancement framework, NMF is applied
in the following way. In the training phase, we compute a
speech dictionary Wspeech ∈ RK×L, and a noise dictionary
Wnoise ∈ RK×L, from their corresponding spectrogram mag-
nitudes, where the design parameters K, and L represents the
number of frequency bins and the number of dictionary basis
vectors respectively. We assume, without loss of generality, that
both the speech and noise dictionaries have the same number of
basis vectors L. In the testing phase, we estimate the activation
matrix Hnoisy ∈ R2L×M that best approximates the magnitude
spectrogram of the noisy signal Vnoisy ∈ RK×M :

Vnoisy ≈ [Wspeech Wnoise]Hnoisy (1)

where Wspeech and Wnoise are fixed and retrieved from the
training phase. Finally the enhanced spectrogram magnitude V̂
is calculated by:

V̂ = WspeechH
′ (2)

where H ′ is the L×M matrix consisting of the first L columns
of Hnoisy , i.e. H ′ = [hT

1 ; hT
2 ; . . . h

T
L ], where hT

j is row j of
Hnoisy.

Assuming that the magnitude spectrogram Vnoisy consists
of M frames, then Equations (1) and (2) can be expressed as:

vm ≈ [Wspeech Wnoise]hm ∀m = 1, 2, . . . ,M (3)

v̂m = Wspeechh
′
m ∀m = 1, 2, . . . ,M (4)

where vm, v̂m are the m-th frames of Vnoisy and V̂ respec-
tively, and hm, h′

m the m-th columns of Hnoisy and H ′.

By construction, the dictionaries Wspeech, Wnoise, and by
extension their combination [Wspeech Wnoise], contain only
nonnegative values. Hence, they can be interpreted as gener-
ators of convex polyhedral cones in the positive orthant [8].
Given a matrix P , a convex polyhedral is the set defined by
the conic combination of its columns:

ΓP =

{
x : x =

∑

j

αjPj , aj ≥ 0 ∀j
}

= {x : x = Pα, α � 0}
(5)

where Pj are the columns of P , αj are nonnegative constants,
and α a vector whose elements are the αj values.

Since all the elements of hm in Eq. (3) are nonnegative (as a
column of the nonnegative matrix Hnoisy), vm is approximated
as a conic combination of the atoms in [Wspeech Wnoise].
Therefore, in NMF the noisy frame is expressed as a point in
the cone ΓC generated by C = [Wspeech Wnoise].

This insight is crucial for understanding how speech en-
hancement is achieved in the NMF framework. The noisy frame
is decomposed into speech and noise components in the com-
bined speech and noise cone ΓC . The noise dictionary will cap-
ture the noise-only information of the signal, separating it from
the speech components. Thus, once the noisy frame vm is de-
composed, eq. (3), we retrieve the enhanced frame by keeping
only the activations that correspond to the speech dictionary, eq.
(4).

It is clear that the quality of the enhanced signal depends
on the ability of the cone ΓN , generated by Wnoise, to accu-
rately model the noise components of the signal. Hence, it is
necessary to have prior knowledge about the type of noise that
corrupts the signal. However, this is not always possible, and
various methods have been proposed in the literature to address
this issue. For example, the authors in [7], use a noise selec-
tion scheme to decide which dictionary to use in the denoising
phase, while a similar approach has been used for SNR estima-
tion in [17] and image clustering in [12]. Hence, investigating
conic affinity measures could guide the design of such systems
by selecting the appropriate noise through its cone representa-
tion.

3. Conic Affinity Measures
We construct two conic affinity measures: one based on Eu-
clidean distance of a point to a cone, and another on based on
cosine similarity.

3.1. Distance of a point to a cone

Consider two cones ΓA, ΓB generated by matrices A, and B.
We assume without loss of generality that the columns of both
matrices act as the extreme rays of the cones they generate. We
define the first affinity measure as the average Euclidean dis-
tance of each extreme ray in ΓA to the cone ΓB :

δd(ΓA,ΓB) =
1

K

K∑

k=1

d(ak,ΓB)

where ak is an extreme ray of ΓA, K the number of extreme
rays and d(ak,ΓB) the Euclidean distance of ak to the cone
ΓB . We calculate the distance by solving the following convex
quadratic problem:
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minimize
x

||Bx− ak||22
subject to x ≥ 0

In our case, the cones are generated by the NMF dictio-
naries. Since the atoms of those dictionaries can have different
ℓ2 norms, we normalize all the atoms to unit ℓ2 norm in order
to have consistent distance values. Normalization of dictionary
atoms to unit length does not alter the performance in the de-
noising phase.

We expect that smaller values of δd(ΓA,ΓB) indicate that
the two cones ΓA, ΓB are closer in the multidimensional space
they are defined.

3.2. Cosine similarity

We calculate the second conic affinity, cosine similarity,
through the following procedure. For each of the two cones
ΓA, ΓB , we form random conic combinations of their extreme
rays to produce new points within their respective sets. For ex-
ample, if ΓA is generated by matrix A ∈ RM×N and every
column of A acts as an extreme ray of ΓA, then for random
vectors zi = [zi1 zi2 . . . ziN ], where zij ≥ 0, 1 ≤ j ≤ N ,
the point xi:

xi = zi1




A11

A12

...
AM1


+ zi2




A21

A22

...
AM2


+ . . .+ ziN




AN1

AN2

...
AN2




is part of the cone ΓA.
The result of this “sampling” process are the sets CA ⊂ ΓA

and CB ⊂ ΓB . Following this, we find the vectors ai ∈ CA

and bi ∈ CB with the maximum cosine similarity:

s(ai, bi) =

∑M
m=1 aim · bim√∑M

m=1 a
2
im ·

√∑M
m=1 b

2
im

Subsequently, these vectors are removed from CA and CB and
we repeat the process. Finally, we compute the average cosine
similarity of all pairs:

δs(ΓA,ΓB) =
1

|CA|

|CA|∑

r=1

s(ar, br)

where |CA| = |CB | is the cardinality of the set CA, and ar, br
are points in the sets CA and CB respectively. Notice that
δs(ΓA,ΓB) is bounded between 0 and 1 and higher values of
δs(ΓA,ΓB) indicate high degree of similarity between the two
cones ΓA, ΓB .

4. Experiments
In our experiments we use 10 male and 10 female speakers from
the TIMIT database [18] to create speaker-specific dictionaries.
Each dictionary is trained using 9 utterances. We corrupt ut-
terances of those speakers with noises from the NOISEX-92
database [19] (see Table 1) at an SNR levels of 0 dB and 5 dB.
The NOISEX-92 database contains 15 types of noise with dif-
ferent characteristics, such as wideband and narrowband noises
as well as stationary and nonstationary noises. Both TIMIT and
NOISEX-92 are sampled at 16 kHz.

Table 1: NOISEX-92 noises

NOISE
TYPES

White (W)
Pink (P.)

Speech Babble (S.B.)

Tank (T.)

Military Vehicle (M.V.)

Car Interior (C.I.)
Destroyer Engine Room (D.E.R)

Destroyer Operations Room (D.O.P)

F16 Cockpit (F16)

Factory Floor 1 (F.F.1)

Factory Floor 2 (F.F.2)
High Frequency (H.F.)

Machine Gun (M.G.)

Jet Cockpit 1 (J.C.1)

Jet Cockpit 2 (J.C.2)

The spectrograms that were used to train the dictionaries,
for both speakers and noises, were extracted using 25 ms win-
dows with an overlap of 10 ms and 512 frequency bins. For each
speaker and noise type, we created dictionaries of 257 atoms,
which were normalized to unit length.

In order to demonstrate how the affinity measures presented
in Section 3 relate to speech enhancement performance metrics,
we perform the following experiment. We corrupt speech ut-
terances with a specific type of noise and enhance the signal
through NMF while using different noise dictionaries. For each
noise dictionary, we observe its effect on the enhanced signal
in terms of Perceptual Evaluation of Speech Quality (PESQ),
segmental SNR, and Weighted Spectral Slope (WSS) score im-
provements. Moreover, for each dictionary we measure the val-
ues of the two conic affinity measures with the respect to:

• the “oracle” dictionary; that is, the dictionary that corre-
sponds to the type of noise that corrupts the signal.

• the speaker-specific speech dictionary.

Using this information we formulate a decision rule for select-
ing a noise dictionary amongst candidates, which takes into
account both the relationship between the oracle noise dictio-
nary and the speech dictionary. The dictionary selection rule
includes the following steps:

1. Calculate δs(Woracle,Wi), δd(Woracle,Wi), for all
noise candidates. Wi is the noise dictionary correspond-
ing to candidate i.

2. Find the set Ss that contains the two noises with highest
δs(Woracle,Wi), and the set Sd that contains two noises
with the highest δd(Woracle,Wi). If Ss = Sd move to
the next step. Otherwise, increase Ss and Sd until they
contain at least two common elements.

3. For all elements n ∈ Ss∩Sd calculate δd(Wspeech,Wn)
and δs(Wspeech,Wn).

4. Find element p ∈ Ss∩Sd with lowest δd(Wspeech,Wp)
and remove it from Ss ∩ Sd. Repeat until only one ele-
ment remains in Ss∩Sd. The dictionary that corresponds
to the noise remaining in Ss ∩ Sd is the one selected.
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Table 2: Performance of speech enhancement metrics for six noises in the NOISEX-92 database (the abbreviations are expanded in
Table 1). For each of the three metrics (PESQ, segmental-SNR, WSS), oracle represents the dictionary that corresponds to the noise
that corrupts the signals. Selected in the dictionary selected through the method we presented in Section 4. 2nd Best corresponds to
the dictionary that results in the best performance if we exclude the oracle. Finally, Worst corresponds to the dictionary, that results in
the lowest performance amongst the 14 noise candidates.

PESQ segmental-SNR WSS

Oracle Selected 2nd Best Worst Oracle Selected 2nd Best Worst Oracle Selected 2nd Best Worst

C.I. 0.5070 0.4086 0.4233 -0.0683 15.1519 11.9478 12.1326 0.4985 31.7743 28.3832 28.3832 -0.3519

D.E.R. 0.4925 0.3574 0.3574 0.0186 4.8504 2.5881 2.7218 0.2596 30.1751 16.8767 16.8767 3.4926

D.O.P. 0.4911 0.4851 0.4851 0.1074 4.7053 4.5913 4.5913 0.1199 19.4574 18.002 18.7383 3.133

F.F.1 0.4072 0.3730 0.39531 0.0634 18.5265 16.7111 18.4446 3.0617 3.7963 3.107 3.107 0.2152
M.G. 0.6643 0.5225 0.5225 0.0452 11.3707 7.9637 7.9851 -0.5457 8.0452 6.9567 7.9817 -0.2944

M.V. 0.5987 0.5577 0.5577 0.0434 18.3689 17.8433 17.8433 1.7797 8.3266 7.9767 7.9767 0.2720

J.C.2 0.7184 0.6505 0.6505 0.0391 13.0912 10.098 13.4052 3.9956 4.9335 3.9286 3.9286 -0.4507

Thus, for each of the 15 noises in NOISEX-92, we use the
aforementioned method to select a dictionary from the remain-
ing 14, and compare its performance with the oracle, the second
best after the oracle, as well as the dictionary with the worst per-
formance. Notice that the oracle is excluded from the selection
process since it would be trivial to identify the oracle dictionary
with conic affinity measures. Therefore, the goal of our method
would be to select the 2nd best dictionary or one close to its per-
formance. Due to space limitations, we present the results for a
subset of noises in Table 2. Specifically, we present results for
Car Interior (C.I), Destroyer Engine Room (D.E.R.), Destroyer
Operation Room (D.O.P), Factory Floor 1 (F.F.1), Machine Gun
(M.G.), and Military Vehicle (M.V.). However, the performance
is similar for all the noises in NOISEX-92.

In Table 2, we observe that our method always selects a
dictionary whose performance is close to 2nd best, and in some
cases equal to 2nd best, for all the speech enhancement metrics.
Additionally, notice that the performance of the selected dictio-
nary is never close the worst performing one. These two obser-
vations suggest that we can exploit the geometrical properties
of the cones to find similar types of noise through dictionary
representations instead of using signal extracted features (e.g.
MFCC, filterbanks, etc) as in [17], [20].

Moreover, these results indicate that we could use conic
affinity measures to design NMF-based systems that will be
able to enhance speech signals in unseen noise conditions. For
example, using the noisy signal and a pre-trained pool of dic-
tionaries we could exploit conic affinity measures to select the
most suitable dictionary to enhance the signal.

However, the conic affinity measures we employed have
drawbacks. First, the averaging process involved in the com-
putation of δs(ΓA,ΓB) and δd(ΓA,ΓB) reduces the complex
geometry of the cones to a single value. Second, we have not
exploited measures that provide information regarding the ori-
entation of the cones in the multidimensional space, for example
vectors a, b might have the same cosine similarity with vector
c but lie in different places in the positive orthant. The same
argument holds true for the Euclidean distance.

Furthermore, the conic affinity measures are calculated sep-
arately for the noise and speech dictionaries. A metric that
jointly measures the conic affinity between the candidate noise
cone and the groundtruth noise and speech cones could be ben-
eficial since it would exploit the geometry of both cones simul-

taneously.
In conclusion, the results presented in this work warrant fur-

ther investigation. Interpreting NMF dictionaries as cone gener-
ators enables us to exploit their geometrical properties and can
potentially lead to improved speech enhancement performance
in unseen noise conditions.

5. Conclusions and Future Work
In this work we explored conic affinity measures and their rela-
tionship with speech enhancement metrics. We found that using
conic affinity measures we can make informed decisions about
which dictionary to use in the denoising phase. Using a selec-
tion procedure we were able to choose dictionaries that result in
overall good performance.

Our next steps will focus on two directions. First, we need
to investigate more conic affinity measures that will be able to
capture the geometry of the cone in a more detailed manner. Ad-
ditionally, we need measures that provide information regarding
the relative orientation of the cone in the space. Such mea-
sures could enable us to make accurate comparisons between
two cones.

Finally, we will explore methods to utilize these measures
to design speech enhancement systems that will be able to oper-
ate in unseen noise conditions. To that end we need to take into
account the noisy signal, and explore its relation to the speech
and noise candidate dictionaries.
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