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Abstract

In the current paper, an automatic prosody assessment method
for learners of English using a weighted comparison of funda-
mental frequency (FO) and intensity contours is proposed. Pat-
terns of FO and intensity of learners are compared to that of
native using a proposed metric — a weighted distance — in which
the error around the high values of prosodic features have more
weight in the computation of the final distance. Gold-standard
native references are built using the k-means clustering algo-
rithm. Therefore, we also propose a data-driven criterion called
weighted variance based on the weighted similarity within the
whole set of native utterances to determine the optimal number
of clusters k. In comparison with baseline contour comparison
metrics which resulted in a subjective-objective score correla-
tion of 0.278, our method combining the proposed metric and
criterion led to a final subjective-objective score correlation of
0.304. In comparison, subjective scores correlated at 0.480.
Index Terms: prosody assessment, prosodic contour modeling,
language learning

1. Introduction

It can be challenging for language learners to find an appro-
priate environment in which to practice the language, whether
it is due to fear of talking in a traditional class or because hu-
man teachers can be costly or scarce. Over the past years, com-
puter assisted pronunciation training (CAPT) systems have pro-
vided learners solutions to overcome these issues by offering
technologies for correcting and giving feedback on the learn-
ers’ pronunciation. Although most of these technologies have
mainly focused on segmental aspects of speech, which handle
phonetic pronunciation, attention has to be paid to supraseg-
mental aspects of speech responsible for intonation, rhythm and
stress patterns, also known as prosody. Prosody plays a signif-
icant role in language learning since it can reflect a learner’s
fluency and intelligibility.

Research has been conducted to introduce prosody assess-
ment for language learners. Escudero et al. [1] proposed to use
tones and break indices (ToBI prosodic labels) [2] on non-native
and native utterances. Mutual information is computed between
the set of labels to determine the quantity of information shared
between them and infer the quality of the non-native speaker’s
prosody. A more common approach to non-native prosody as-
sessment is to compare acoustic features of prosody — funda-
mental frequency (F0), intensity, and duration — of a learner and
a reference utterance. Arias et al. [3] developed an intonation
assessment system in which non-native speakers were asked to
repeat a sentence following an intonation pattern described with
rise and fall labels. The FO contour of the non-native speaker is
then compared to that of a proficient speaker who had to follow
the same intonation pattern using a frame-by-frame dynamic
time warping alignment. Although the method showed promis-

ing results, it is underlined in [4] that using such prosodic la-
bels can be challenging since it requires expert knowledge and
suffers from low inter-rater agreement. Instead of using only
one speaker as a reference, Schwanenflugel et al. [5] compares
a child’s FO contour to the average of a set of adult speakers’
contours to evaluate the child’s prosody. Children had to utter
sentences and FO contours were constructed by averaging the
FO values over each word of the sentence. As a final reference
contour, the authors took the average of several adult contours.
However, they assumed that one ideal FO pattern existed among
the adult speakers, so they made sure that the final averaged
reference was made up of adult contours that highly correlated
with each other. Speakers whose FO contours did not corre-
late well with those of other speakers’ were discarded from the
analysis and not taken into account in the final averaged con-
tour. As such methods do not allow to cover the diversity of
prosodic contour variations, Wang et al. [6] proposed to con-
sider each individual native contour as a reference, but doing
so can end up being computationally expensive and inefficient.
Instead, they correlated FO contours of non-native read speech
against a single averaged contour of all native speakers, this
time regardless of the various existing patterns among them. To
further improve the representation of the diversity of prosodic
contours, Cheng [7] proposed to create three clusters of similar
FO and intensity contours using the k-means algorithm to allow
several prosodic reference representations for a same utterance.
This time, the references to which the non-native contours were
compared were non-native contours that were assigned a high
prosodic score by human raters. Therefore, no native database
was needed and all speakers involved in the study were recorded
under the same conditions. Moreover, unlike the studies previ-
ously cited, Cheng did not correlate the contours together but
used the Euclidian distance between them as a comparison met-
ric. In addition to FO and intensity features, phoneme dura-
tion information was also used to predict final prosodic scores,
which allowed the final correlation between machine and hu-
man scores to be greater than the correlation between human
scores.

Motivated by the encouraging results obtained in the pre-
vious studies, we attempt to bring improvements to existing
frameworks of automatic prosody assessment by prosodic con-
tour comparison. Fundamental research on prosody acknowl-
edges the fact that peaks in prosodic features, especially in
F0, induce the perception of prominence (i.e., stress or accent)
[8, 9]. Such affirmation led us to believe that when dealing with
prosody, acoustic measures do not bear the same importance at
every point; thus, it is necessary to discriminate low and high
values, the latter being more meaningful than the former. While
previous research tended to treat acoustic measures equally at
every point, we propose a novel metric, a weighted distance,
that would allow high values of prosodic features to have more
importance in the contour comparison task. Moreover, it is cru-
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cial to have enough reference contours covering the diversity of
possible prosodic patterns, but none of the previous studies pro-
vided a way to determine the appropriate number of references
needed. As a consequence, we also propose a criterion called
weighted variance based on the similarity between the set of in-
dividual contours to determine how many clusters are necessary
when using the k-means algorithm to cluster the contours. Be-
cause obtaining accurate phoneme and syllable segmentations
of non-native speech is out of the scope of the current paper,
we decided not to include phoneme duration information in
the analysis and only consider FO and intensity features. Our
method is thus independent of any speech recognition system
so that the phonetic quality of the learner’s utterance does not
impede their prosody assessment. In the present paper, we fo-
cus on Japanese learners of English, but the method proposed
can be extended to learners with various native languages.

2. Prosodic contour comparison
2.1. F0 and intensity feature processing

Prosodic contours, consisting of FO and intensity contours, of
each native and non-native responses have been extracted fol-
lowing the method proposed by Cheng in [7], in which FO and
intensity values are sampled at N; = 25 equally spaced points
throughout the utterance. Feature extraction is conducted us-
ing Praat intensity and pitch tracker [10]. To avoid the natural
variations between speakers, all features are z-normalised at the
speaker level with respect to corresponding mean and standard
deviation values. However, standard deviation values can vary a
lot depending on the number of utterances spoken by the same
speaker. As a consequence, z-normalisation is likely to intro-
duce outliers around the extreme values of the contours and im-
pact the comparison between them. To address this issue, we
suggest adding a step to the processing procedure which con-
sists in normalising the prosodic contours with the following
sigmoid function:

1
u(t) = 1+ exp(—az(t))

where z(t) refers to the z-normalised value of the prosodic fea-
ture at time ¢ and o represents the slope of the sigmoid function.
Introducing this step allows the smoothing of quick variations
around high values while conserving the general shape of the
contour and keeping the features in a range of O to 1 for all
speakers. In the rest of the paper, a prosodic contour is denoted
as U, such that U = (u(1),...,u(N¢)) is the concatenation of
the V; normalised prosodic values.

As stated in previous studies, peaks in prosodic values sur-
rounded by valleys matter when identifying prominent syllables
in a word [8, 9, 11]; therefore, we decided not to interpolate un-
voiced regions where FO values are undetermined but to keep
them at a zero value so that the peak and valley characteristics
found in raw FO contours are preserved in the normalised ones.

()]

2.2. Comparison metric

Common metrics for contour comparison between non-native
and reference utterances include Euclidian distance [7], dy-
namic time warping [3] and Pearson correlation coefficient
[5, 6]. To have high values of prosodic contours matter more
in the evaluation of prosody, we propose a metric, referred to as
“weighted distance” in the rest of the paper, which consists in
putting more weight on the squared error between the reference
and the non-native contour around high values of the reference
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FO or intensity contour. The weighted distance w Dist between
a sigmoid-normalised reference contour U, and non-native one
Unn of a given word is defined as

Nt
wDist(Uy, Unn) = > wErr(ue(t), unn(t))  (2)
t=1

where wETT (ur(t), unn(t)) represents the weighted error be-
tween u.,(t) and wnn (t), the feature value at time ¢ of the refer-
ence and non-native contour, respectively. The weighted error
is calculated as follows

WErr(ur(t), unn(t)) = we(ur(t)) - (ur(t) — unn(t))2 3)

The weight we(u,(t)) is linearly dependent on wr(t),
where the highest value of U, over the N; sample points is as-
signed the highest weight and the lowest value is assigned the
lowest weight

(ur(t) = Urmin)) (Wmaz — Wmin)
(Urmaz - Urmzn)

wt(ur(t)) = Wmin +
)

The minimal and maximal values, W.min and Wmaz, be-
tween which the weights vary will be tuned through experiment.

For each utterance to score, the proposed weighted distance
between its FO (resp. intensity) and a reference FO (resp. in-
tensity) contour is calculated. The final automatic score for the
utterance to assess is the average distance between the one given
for FO contour comparison and that given for intensity contour
comparison.

2.3. Gold-standard native references

Because different pronunciations of the same word with a good
prosody can result in very different prosodic patterns [12], it is
necessary to have several gold standard references at our dis-
posal when it comes to comparing prosodic contours in the task
of prosody assessment. We chose to use the k-means algo-
rithm to generate several reference contours by clustering simi-
lar prosodic contours together, as suggested by Cheng [7]. Since
optimal clusters in k-means should be able to describe the over-
all variability in the data while avoiding redundancy between
the clusters, we propose a systematic criterion to set the £ value
based on how similar the contours are to each other — that is,
the more similar they are, the smaller k will be. In consistency
with our previously defined weighted distance (2), the proposed
criterion is derived from the variance between contours, where
the average Euclidian distance between the contours is replaced
by our weighted distance. This criterion is referred to as the
weighted variance (wV ar) between the contours and is defined
as:

n—1 n

_ 1 ‘ @ .
wVarfﬁz Z wDist(U.",U,"’)

i=1 j=i+1

(&)

where
e N = (;) is the number of pairs of contours in the total
set of n contours

« wDist(U, ™V, U, %) is the weighted distance, defined
by (2), between two reference contours U, and U, @
of the same word
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Figure 1: Example of k-means results for the word “gorilla” on native utterances where k=3 for FO contours (top) and k=2 for
intensity contours (bottom) using our weighted variance criterion. Z-scores of prosodic contours have been converted by the sigmoid
normalisation function defined in (1). Bold lines represent the mean contour of each cluster

For each word, the weighted variance of the set of native
prosodic contours is calculated and compared to the minimal
and maximal weighted distances between two different contours
of the set. We decided to make the number of clusters k linearly
dependent on these minimal and maximal values as follows:

(wVar — wVarmin) (kmaz — kmin)

k= |kmi 6
| Kmin + (@Varme — wVarmm) I ®
with
kma:c = \_%J . .
wVarmin = min wDist(UT(z)7 UT(J)) )
i,J€[1,n],i#£j ' .
WV armer = max  wDist(U,", U,)

i,J€[1,n],i#j

If the weighted variance between the contours is small
enough, we allow the k-means algorithm to create only one
cluster (kmin = 1) so that the resulting reference contour cor-
responds to the average of all the contours. Moreover, in order
to avoid at best the probability of creating empty clusters, the
upper limit for the number of clusters ka2, is set set to half of
the total number of reference contours.

Since the variance is computed independently for FO and
intensity contours of the same word, a different number of clus-
ters can be generated for the two features. An example of clus-
tering using our criterion is shown in Figure 1, where k-means
is applied on one of the words of our native set of utterances
decribed later in Section 3. In that example, a different number
of clusters is generated for FO and intensity contours.

In cases where several clusters are produced, the contours
of the utterance to assess will be compared to the mean of each
cluster. The value of the metric obtained for the closest mean
will be kept to compute the final assessment score.
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3. Experiments
3.1. Data

Experiments were conducted on isolated English words spo-
ken by Japanese learners of English from the English Read by
Japanese Corpus (ERJ) [13]. Among all the utterances of the
corpus, 910 were prosodically assessed by two native Ameri-
can English teachers who had to evaluate the prosody of the
speakers on a scale of 1 to 5, corresponding to categories rang-
ing from “very poor” to “excellent”. The raters were specif-
ically asked to focus on whether or not the speaker positioned
the stress on the appropriate syllable. This subset corresponds to
36 words with different numbers of syllables and various accent
patterns spoken by 160 (79 female and 81 male) Japanese uni-
versity students. Speakers with a wide range of proficiency in
English were chosen for the development of the dataset. Exam-
ples of words found in the dataset include, for instance, dessert,
totalitarian, percent, accessory and kangaroo. Overall, the sub-
jective score correlation, defined as the correlation between the
native raters, was 0.480. It should be pointed out that this low
overall subjective score can be accounted for the fact that the
scores of only two human raters were used in the study and that
there is a relatively small number of utterances per word. Small
variations in human ratings can then result in significant degra-
dation of the subjective score correlation. This subjective score
is nonetheless considered as an upper limit for final subjective-
objective score correlations.

Native reference utterances for each word present in the
dataset were taken from online English dictionaries [14, 15, 16,
17, 18, 19]. Depending on the availability of native pronunci-
ations online, from 4 to 19 native utterances could be recorded
with an average of 14 utterances per word. Speakers with vari-
ous English accents were available (Australian, Irish, Jamaican,
Scottish, UK, UK Received Pronunciation, UK Yorkshire, US,
and US Southern).



3.2. Experimental conditions

To evaluate the performance of the proposed metric and gold-
standard native reference building method, correlations between
subjective-objective scores (that is, between human assigned
scores and automatic scores) were computed and compared to
those obtained with the baseline methods. Results are summa-
rized in Table 1. The baseline metrics refer to the Euclidian
distance (euclidDist) and the feature correlation (featCorr) be-
tween the contours. The baseline methods for building gold-
standard native references refer to when all native contours are
averaged into a single native reference (mean) as well as when
the k-means clustering algorithm is conducted with a fixed num-
ber of clusters (kMeans, k=4). The first four lines of Table 1
denoted as (A), (B), (C) and (D) represent those baseline condi-
tions.

The performance of our proposed weighted variance crite-
rion (wVar) for choosing k in k-means was evaluated when used
together with the baseline contour comparison metrics as well
as with our weighted distance (conditions (E), (F) and (I) of Ta-
ble 1). The performance of the baseline methods for building
gold-standard references were also evaluated when used with
our weighted distance (conditions (G) and (H)).

Results were obtained with tuned parameters such as the
slope a of the sigmoid function from equation (1) (¢ = 1) and
the limit weights Wmin and Wmaee from equation (4) (Wyin =
0.5, Wmaz = 1).

Experiments were iterated 200 times and the final
subjective-objective score correlations were averaged over the
iterations using Fisher’s method.

Table 1: Subjective-objective score correlations

Gold standard references | Contour comparison metrics

Conditions | mean kMeans euclidDist  featCorr wDist | Correlation
(A) . . 0.250
(B) k=4 . 0.265
©) . . 0.277
(D) k=4 o 0.278
(E) wVar . 0.279
(F) wVar . 0.300
G) . . 0.286
(H) k=4 . 0.294
[0y wVar . 0.304

The best performance on the baseline methods was ob-
tained when the feature correlation was used as metric for con-
tour comparison when gold-standard native references are built
with k=4 clusters (condition (D)). The feature correlation al-
lowed to predict final prosodic scores even better when used
with our weighted variance criterion (condition (F)). Regard-
less of the method used for building gold standard references,
our weighted distance achieved better results than the baseline
metrics (conditions (G), (H), (I)) but the best result was ob-
tained when it was used together with our wVar criterion (con-
dition (I)). The highest correlation between subjective-objective
scores thus obtained was 0.304. As a comparison, the overall
correlation subjective score of our dataset was 0.480.

4. Conclusions

We proposed a metric to determine the similarity between non-
native utterances prosodic contours and gold-standard native
reference contours to evaluate the quality of their speaker’s
prosody. Our proposed weighted distance allowed to outper-
form traditional contour comparison metrics such as the Eu-
clidian distance or the feature correlation between the contours.
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Gold-standard references constructed with our weighted vari-
ance criterion to choose the number of clusters in the k-means
algorithm also allowed better results than baseline methods to
build gold-standard native references. The weighted variance
enabled to create an appropriate number of k clusters so that the
diversity of prosodic patterns was represented by the resulting k
native references. The proposed metric and criterion took into
account the theory that peaks of prosodic features account for
the perception of prominence by assigning more weight to the
error around peaks of prosodic values [8, 9]. Given the results
obtained, we are encouraged to find further ways to include the
prosodic theory previously cited into prosody assessment tasks.
In that sense, the incorporation of additional features derived
from FO and intensity to help the discrimination of high and low
values of prosodic features is a direction for future work. More-
over, we focused here on isolated English words but believe that
the methods proposed can be extended to the study of sentences’
prosody if used in combination with adequate prosodic feature
processing such as the one proposed by Wang et al. [6].
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