
Sequence-to-Sequence Neural Network Model with 2D Attention
for Learning Japanese Pitch Accents

Antoine Bruguier1, Heiga Zen2, Arkady Arkhangorodsky3

1 Google, Mountain View, USA 2 Google, London, UK
3 University of Toronto, Tronto, Canada

{tonybruguier,heigazen}@google.com, arkady.arkhangorodsky@mail.utoronto.ca

Abstract
Many Japanese text-to-speech (TTS) systems use word-level
pitch accents as one of their prosodic features. Combination of
a pronunciation dictionary including lexical pitch accents and
a statistical model representing the word accent sandhi is often
used to predict pitch accents from a text. However, using hu-
man transcribers to build the dictionary and training data for the
model is tedious and expensive. This paper proposes a neural
pitch accent recognition model. This model combines the in-
formation from audio, and its transcription (word sequence in
hiragana characters) via two-dimensional attention and outputs
word-level pitch accents. Experimental results show a reduction
in the word pitch accent prediction error rate over that with text
only. It lowers the load of human annotators when building a
pronunciation dictionary. As the approach is general, it can be
used to do pronunciation learning in other languages as well.
Index Terms: Japanese text-to-speech; pitch accent; pronunci-
ation learning; attention; neural network.

1. Introduction
Typical TTS systems consist of a number of sub components,
such as sentence segmentation, word segmentation, text nor-
malization, grapheme to phoneme conversion, prosody predic-
tion, and speech waveform generation. Predicting prosodic fea-
tures from a raw text is one of the most important and difficult
parts, as no information about prosody is usually available in
the raw text.

In the case of Japanese, the control of fundamental fre-
quency (F0) movement is critical to achieve natural-sounding
synthetic speech. Standard Japanese (i.e., Tokyo-dialect) is
known as a pitch-accented language. The accent is character-
ized as a downstep from high-pitch to low-pitch; the F0 of a
word rises until it reaches a mora with downstep, then drops
abruptly. The position of the mora with downstep is called pitch
accent type (nucleus). Here are examples of lexical pitch accent
types of Japanese place names.

• 大阪 (おおさか; Ōsaka)→ type = 0 (i.e., no downstep)

• 奈良 (な↓ら; Nara)→ type = 1

• 徳島 (とく↓しま; Tokushima)→ type = 2

The correct rendering of pitch accent is essential to having a
pleasant and accurate TTS system in Japanese. Indeed, some
words are pitch accent homophones: they are pronounced with
the same phonemes, but the pitch accent is different and the
words have distinctive meaning. For example, the words 箸
(chopsticks, type = 1) and橋 (bridge, type = 0) have the same
hiragana writingはし but have different pitch accents. Japanese
is mostly written using Kanji characters, Hiragana characters,

and Katakana characters. Both Hiragana and Katakana charac-
ters are an accurate representation of the phonemes of a word
and word written in Kanji can be transformed into either Hi-
ragana or Katakana characters. However, none of these three
written forms have a marker for the pitch accent. In fact, many
native Japanese speakers are unaware that their language has
pitch accent, but if a TTS system renders a word with the cor-
rect sequence of phonemes but an incorrect pitch accent, it will
immediately sound incorrect to a native listener.

For a given text, the location of the pitch accent nucleus
(downstep) needs to be predicted for each accentual phrase as
well as the boundaries of breath groups and accentual phrases.
An accentual phrase is often composed of a few words, typically
a content word followed by a function word. Although all the
content words (and some function words) have their own accent
type as their lexical attribute, the accent nucleus of an accentual
phrase often shifts due to the word accent sandhi. In the fol-
lowing example, pitch accent types change when two words are
concatenated to form a compound word.

• 音響 (おんきょう; Onkyō)→ type = 0
• 学会 (がっかい; Gakkai)→ type = 0
• 音響学会 (おんきょうが↓っかい; Onkyōgakkai) →

type = 5
Since the position of the pitch accent in a word varies depending
on context [1], having a dictionary may not be sufficient. This
accent shift has to be correctly predicted in TTS conversion.
Many Japanese TTS systems adopted rules developed by Sag-
isaka et al. [2, 3]. There have also been statistical model-based
approaches to learn the word accent sandhi, such as N -gram
language models [4] and conditional random fields (CRFs) [5].

Both rule-based and statistical model-based approaches
rely on the pronunciation dictionary which includes lexical
pitch accents. The statistical model-based approach further re-
quires training data, which is a set of pitch accent annotated sen-
tences. However, building the dictionary and the training data is
tedious and expensive; building the dictionary typically requires
professional linguists, and annotating pitch accents of Japanese
sentences requires human transcribers who speak the Tokyo di-
alect of Japanese and are familiar with the concept of Japanese
pitch accents. For these reasons, the publicly available linguis-
tic resources of Japanese pitch accents is limited (e.g., Unidic
[6]).

This paper proposes a neural pitch accent recognition
model. This model combines the information from audio and its
transcription (word sequence in Hiragana characters) via two-
dimensional attention and outputs word-level pitch accents. It
lowers the load of human annotators when building a pronunci-
ation dictionary and pitch accent sandhi model.

The rest of this paper is organized as follows. Section 2
describes the task. Sections 3 and 4 explain the proposed ap-

Interspeech 2018
2-6 September 2018, Hyderabad

1284 10.21437/Interspeech.2018-1381

http://www.isca-speech.org/archive/Interspeech_2018/abstracts/1381.html


proach. Section 5 discusses the relationship to pronunciation
learning. Section 6 shows experimental results. The final sec-
tion gives concluding remarks.

2. Description of the Task
The goals of the task is to 1) build a pronunciation dictionary
where the representation of the pronunciation makes explicit
both the phonemes and the pitch accent and 2) annotate pitch
accents given audio and its phonetic transcription (without pitch
accents) to be used for training pitch accent sandhi models.

One way to build such a dictionary and annotate data is to
train human native speakers of Japanese and ask them to tran-
scribe a large quantity of words and annotate audio. This is usu-
ally a tedious and expensive task. It is quite challenging to scale
to a large dictionary. It would also require the native speakers
to know the correct pitch accent in standard Japanese (Tokyo
dialect) for words in the tail-end of the distribution.

One way to improve the accuracy of the human transcribing
the pitch accent is to provide them with an example of audio. If
they can listen to the example of the audio, then they will know
what the correct pitch accent is. Thus, providing the example
improves the accuracy of the human transcription. However, it
does not reduce the tediousness of the task.

Therefore, this paper propose to build a machine learning
system that performs the same task as the expert human tran-
scribers. The system takes as input the Hiragana representa-
tion (phonetic transcription) of what is being said, and the audio
waveform of the voice. It then produces the same sequence of
Hiragana interspersed with pitch accent marks. For example, an
input of the system would be:

• るな?に?よると?すぐ?に?おこるから?しんぱい?
• audio waveform

The question mark is the indicator that a pitch accent must be
predicted. The target sequence is:

• るな1に0よると2すぐ1に0おこるから2しんぱい0

where the numbers indicate the pitch accent types of their pre-
ceding word in Hiragana.

Thus, such a system would perform the same task as human
annotators. This paper will show that, while the accuracy of
the system is not 100%, its performance is high enough that it
greatly reduces the tediousness of the task for humans, and thus
increases the throughput.

As a comparison, we measure the performance of a model
that does not use the audio and tries to predict the target se-
quence only from the input text. If we can show that the model
that uses the audio waveforms outperforms the model that does
not use them, then we will have built a model that truly learns
pronunciations from audio.

3. Input Sequences
The proposed model has two input sequences, one for tran-
scription and another is for audio. The first input is the se-
quence of T input graphemes (Hiragana), x = {x1, . . . ,xT }.
Each grapheme is represented as a one-hot vector xt =
[x̃1,t, . . . , x̃N,t] where N denotes the total number of possible
graphemes.

The second input is acoustic features derived from the input
audio waveform. The acoustic features are a sequence of M -
dimensional mel-filterbank outputs, y = {y1, . . . ,yU} where
U denotes the length of acoustic features.

Each of the input sequences x and y is the input of an
encoder long short-term memory (LSTM) [7] model. The en-
coder LSTM models output the two sequences of encoded in-
puts, {x̄1, . . . , x̄T } and {ȳ1, . . . , ȳU}, where x̄t and ȳt corre-
spond to the I and J-dimensional encoded grapheme and acous-
tic features, respectively. We used the standard LSTM model.
It is hypothesized that the LSTM model that computes x̄ can
extract representation which can predict pitch accents of given
graphemes. It is also hypothesized that the LSTM model that
computes ȳt is able to extract representation which can pre-
dict both phonemes and F0. While the acoustic features do not
explicitly include F0, this LSTM model has access to the mel-
filterbank outputs, which has enough information to discover F0

[8] (or whatever signal is a better predictor of F0). Then these
two streams must be combined to predict the pitch accents.

If only the sequence x̄ derived from the graphemes is avail-
able, an attention-based sequence-to-sequence model [9, 10]
would be a natural choice. Indeed these models have been used
in grapheme-to-phoneme prediction [11]. It would be able to
focus its attention on the context of the word whenever it has to
predict pitch accent markers. However, there are two sequences
of varying length T and U , and a new way to combine them is
required.

4. Two-Dimensional Attention
One way to combine the two sequences would be to force-align
the audio to the text. This way, we assign a grapheme to each of
the audio frames (or a blank if no voice is occurring). This pre-
processing step would then allow us to feed a single sequence
into our model that predicts the pitch accent.

This approach has two main disadvantages. The first disad-
vantage is that we would need to first train a force-alignment
model. While this can be derived from a traditional auto-
matic speech recognition (ASR) system, it requires building and
training one. Another disadvantage is that the force-alignment
model and the pitch accent prediction model would be sepa-
rately optimized. This would mean, in particular, that the force-
align model may not be optimal for the final task of pitch accent
prediction.

Instead, we propose to extend the traditional attention-
based sequence-to-sequence model to use a two-dimensional at-
tention. With this two-dimensional attention, the model will be
free to do the force-align task as best as it sees fits and will have
at all times access to whichever part of the text and audio that
it deems useful to the task. This will be achieved by building
an attention matrix that can be indexed by a weight matrix wu,t

with the two time-dimension indices.
While 2D attention has been used for images (e.g. [12]),

the problem here is slightly different. The speech can occur
at a different rate from one example to another (depending on
how fast a person speaks) and the onset and offset of it may not
be at the beginning and end of the audio. In essence, it is like
having rectangular pixels for an image. We could force-align
the sequences, but then we lose the end-to-end joint advantage
of training a single model.

As described above, the two inputs used to build an atten-
tion matrix are:

• x̄i,t derived form the T graphemes (t from 1 to T ) and
encoded on I dimensions (i from 1 to I).

• ȳj,u derived form the U audio frames (u from 1 to U )
and encoded on J dimensions (j from 1 to J).

1285



ȳJ,U · · · ȳJ,U

↑ ↑
ȳJ,1 · · · ȳJ,1

ȳ1,U · · · ȳ1,U

↑ ↑
ȳ1,1 · · · ȳ1,1

x̄I,1 → x̄I,T

...
...

x̄I,1 → x̄I,T

x̄1,1 → x̄1,T

...
...

x̄1,1 → x̄1,T

Figure 1: Encoding of the 2D attention

We then build the input attention matrix Ak,u,t of dimen-
sions I + J , T , and U (figure 1). Its coefficients are:

• Ak,u,t = x̄k,u if k ≤ I

• Ak,u,t = ȳk−I,t if k > I

Note that the input attention matrix contains repeated in-
formation. Along one dimension, the steps increase with audio
time, and along another, the steps increase with grapheme time.
It is up to the attention network to decide how to align the two
steps. In the equations above, for example if k ≤ I , the variable
t is not used on the right-hand side of the equation. This allows
for the model to decide separately what part of the grapheme
and what part of the audio to attend to.

The input of the decoder is the dot product between the in-
put attention matrix Ak,u,t and weights wu,t:

hk =
∑

u,t

wu,t.Ak,u,t

We then operate a recurrent decoding, starting with a
special <sos> symbol, predicting phonemes until a special
<eos> symbol is predicted [13].

5. Relation to pronunciation learning
The proposed approach is closely related to the task of pro-
nunciation learning [14]. The task of pronunciation learning
is to combine audio and graphemes to attach a sequence of
phonemes to words.

Even though the model that we use has the same symbols
for the input graphemes and the target, there is no a-priori re-
striction to using a different set of symbols for the target. We
could, for example, use English audio as input, along with in-
put graphemes transcribed using the Latin alphabet, and have a
sequence of X-Sampa phonemes as targets.

Previous attempts at pronunciation learning used decisions
trees [15], expectation maximization [16], hidden Markov mod-
els [17], discriminative training [18], or finite-state transducers
[19]. Here, we present an end-to-end approach that trains in a
single run. The model does not need prior force-alignment.

This approach has the additional advantage that the weight
given to the graphemes and the audio does not need to be fixed.
In [19], it was shown that tuning the relative importance of the

graphemes versus the audio yields large accuracy gains. How-
ever, the optimal weight is likely to be speaker, task, and context
dependent. An end-to-end model has a better chance of captur-
ing these variations than a single hyperparameter.

Finally, another advantage is that the model is jointly
trained. Previous attempts typically reuse an acoustic model
and/or a grapheme-to-phoneme models. These models are
trained with a different quality metric than pronunciation learn-
ing accuracy. Here we train for the intended usage.

Our approach, however, requires data that is typically not
available. To be used effectively, we would need to have a large
data set where the following information is available:

• audio waveform

• human-transcribed text

• human-transcribed phoneme sequence

The previous approaches have different models, and thus do
not require these data sets. For example, if a previous approach
requires an acoustic model, then it can be trained using a data
set that does not have human-transcribed phoneme sequences;
only audio and graphemes.

However, the problem of pitch accent prediction from audio
is well-suited for designing an end-to-end pronunciation learn-
ing model. First, the data is available to us. Second, it solves a
real world problem for which we previously didn’t have any
direct solution. Third, the task is simpler because the input
graphemes and the target are very close to each other, and thus
we conceivably have a chance of building a predictive model
with a relatively small amount of data.

6. Experiment
In order to perform our experiments, we collected audio record-
ings of about 19,000 sentences. These segments are of studio
quality, and are used to build our TTS voice systems. For this
reason, they also had been annotated by expert linguists so that
in addition to text transcription, the data also had pitch accent
markers. The data came from two speakers.

While this data set does not contain a full variety of how
native voices render pitch accent, it is nevertheless very useful.
Our practical goal for building such pitch accent models is to
accelerate and simplify future annotation of voice building data,
and thus lower its cost.

We split the data in two subsets with 90% for training and
10% for testing.

Our goal was to prove that the addition of the audio data
provided additional information that the model could use. Thus,
we trained two models on the same data. In the base model, we
only used the graphemes and tried to predict the graphemes with
the pitch markers. Since there is only a single input stream, we
used a 1D attention. The test model had access to the audio,
and thus used a 2D attention on both the text and the audio,
as described in section 4. If the test model does indeed use the
audio information, then we should see a reduction in the number
of errors made.

We used standard encoding neural networks. For both mod-
els, the grapheme encoder had three bidirectional LSTM layers,
with 256 units each. The test model had an additional audio
encoder, consisting of six bidirectional LSTM layers, each with
64 units. In both models, we used dropout [20] with a keep
probability p = 0.10 to reduce over-fitting.

We also used a standard decoding neural network. For both
models, the decoder used a dot-product attention and was fol-
lowed by a 3-layer DNN with 256 units per layer. In short,

1286



the only difference between the train and the test models was
whether an audio encoder was present and whether the atten-
tion needed to be 2D.

Using graphemes only 19%
With graphemes and audio 16%

Table 1: Error rate of the predictions

We see in Table 1 a reduction of the prediction error when
using the audio in addition to the text. Thus, in our case, we
were able to reduce the number of pitch accent prediction errors
by about 15% relative to adding a new audio encoder and using
a 2D attention to combine the information from the grapheme
and audio.

7. Conclusion
We presented an extension of attention-based neural networks
that allow for using two input sequences whose lengths vary
from example to example. We then applied the new model to the
problem of learning the pitch accent of Japanese words by using
as input the audio waveform and the transcript written using
hiragana characters. On a data set of about 1,900 examples, we
reduced the prediction error by 15% (relative).

The method we proposed is, however, general. It can be
readily expanded to the more general problem of pronunciation
learning where we learn the complete sequence of phonemes.
The new model naturally learns to force-align input sequences,
and how to weight information from graphemes and audio. In
addition, it is trained with the objective function that is pre-
cisely the phoneme accuracy, as opposed to previous attempts
that relied on models trained independently and with objective
functions not designed for pronunciation learning.

8. References
[1] N. Minematsu, R. Kuroiwa, K. Hirose, and M. Watanabe, “CRF-

based statistical learning of japanese accent sandhi for developing
japanese text-to-speech synthesis systems,” ICSA, no. 6, 2007.

[2] Y. Sagisaka and H. Sato, “Accentuation rules for japanese text-
to-speech conversion,” Review of the Electrical Communication
Laboratories, 1984.

[3] ——, “Accentuation rules for japanese word concatenation,”
Transactions of IECE, 1983.

[4] T. Nagano, S. Mori, and M. Nishimura, “An N-gram-based ap-
proach to phoneme and accent estimation for TTS,” Trans. IPSJ,
vol. 47, no. 6, 2006.

[5] M. Suzuki, R. Kuroiwa, K. Innami, S. Kobayashi, S. Shimizu,
N. Minematsu, and K. Hirose, “Accent sandhi estimation of
tokyo dialect of Japanese using conditional random fields,” IEICE
Trans., vol. E100-D, no. 4, pp. 655–661, 2017.

[6] “Unidic,” http://unidic.ninjal.ac.jp/.

[7] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[8] X. Shao and B. Milner, “Pitch prediction from MFCC vectors for
speech reconstruction,” in Proc. ICASSP, 2004, pp. 97–100.

[9] S. Toshniwal and K. Livescu, “Read, attend and pronounce: An
attention-based approach for grapheme-to-phoneme conversion,”
Interspeech, 2016.

[10] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” NIPS, 2018.

[11] B. Milde, C. Schmidt, and J. Köhler, “Multitask sequence-to-
sequence models for grapheme-to-phoneme conversion,” Inter-
speech, 2017.

[12] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov,
R. Zemel, and Y. Bengio, “Show, attend and tell: Neural image
caption generation with visual attention,” in Proceedings of the
32nd International Conference on Machine Learning, 2015.

[13] W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals, “Listen, attend and
spell,” CoRR, 2015.

[14] E. Fosler, M. Weintraub, S. Wegmann, Y.-H. Kao, S. Khudanpur,
C. Galles, and M. Saraclar, “Automatic learning of word pronun-
ciation from data,” in JHU/CLSP Workshop, 1996.

[15] B. Byrne, M. Finke, S. Khudanpur, J. Mcdonough, H. Nock,
M. Riley, M. Saraclar, C. Wooters, and G. Zavaliagkos, “Pronun-
ciation modelling for conversational speech recognition: A sta-
tus report from ws97,” in Fifth LVCSR Summer Workshop, Johns
Hopkins University, 1997.

[16] I. Badr, “Pronunciation learning for automatic speech recogni-
tion,” Ph.D. dissertation, Massachusetts Institute of Technology,
2011, http://hdl.handle.net/1721.1/66022.

[17] R. Rasipuram, M. Razavi, and M. Magimai-Doss, “Integrated pro-
nunciation learning for automatic speech recognition using prob-
abilistic lexicon modeling,” in ICASSP, 2015.

[18] O. Vinyals, L. Deng, D. Yu, and A. Acero, “Discriminative
pronunciation learning using phonetic decoder and minimum-
classification-error criterion,” in ICASSP, 2009.

[19] A. Bruguier, D. Gnanapragasam, L. Johnson, K. Rao, and F. Bea-
ufays, “Pronunciation learning with rnn-transducers,” in Inter-
speech, 2017.

[20] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” in Journal of Machine Learning Re-
search, 2014.

1287


