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Abstract
In this paper, a deep reinforcement learning(DRL) based mul-
timodal coaching model (DCM) for slot filling task in SLU is
proposed. The DCM takes advantage of a DRL based model
as a coach of the system to learn the wrong labeled slots
with/without user’s feedback, hence may further improve the
performance of an SLU system. This DCM model is an im-
proved model of the deep reinforcement learning based aug-
mented tagging model as introduced in [1], by using a better
DRL model with different rewards and adding in a user’s feed-
back modal to achieve one-shot learning.The performance of
DCM is evaluated on two datasets: one is the benchmark ATIS
corpus dataset, another is our in-house dataset with three differ-
ent domains. It shows that the new system gives a better perfor-
mance than the current state-of-the-art results on ATIS by using
DCM. Furthermore, we build a demo application to further ex-
plain how user’s input can also be used as a real-time coach to
improve model’s performance even more.

1. Introduction
Slot filling is one of the most important tasks in spoken lan-
guage understanding (SLU), which is normally formulated as a
sequence labeling problem. Some effective algorithms for this
task include conditional random fields (CRFs), recurrent neural
networks (RNN), or a combination of these models [2, 3, 4, 5].
Recent works also take advantage of more advanced RNN based
model like sequence-to-sequence/encoder-decoder structures,
which can take the attention based contextual features to fur-
ther improve the model’s performance [6]. The details of these
works will be given in next section.

The performance of different models are normally evalu-
ated by their F1 scores, which is mainly due to the imbalance
data distribution in most slot filling tasks. Despite recent mod-
els demonstrate better performance, it becomes harder to make
further improvement by using more advanced or complex net-
work structures. The main reasons of this issue are from three
aspects:
1. Most of the tags in a slot filling task are minority tags, which
only counts a small percentage of the entire dataset. The reason
is that tokens in word sequences are mostly labeled as ‘no se-
mantice tags’, i.e. ’O’. Also among the misclassified tokens, we
observe that most of them are with minority tags. By changing
the learning model structure, it will first improve the model per-
formance on majority tags. Sometimes a model can improve its
performance on minority tags, but at a cost of degrading that on
the majority tags, which can be treated as a common issue for
the imbalanced data [7, 8].
2. Despite the system performance is improved by using more
complicated deep learning models, the number of training pa-
rameters also increases, which is more likely to be over-fitting
[9, 10, 11]. There is a bottle-neck by using more complex net-

work structures or tuning hyper-parameters.
3. Another issue need to be noticed is that even one knows a
deep learning model does not perform very well on a small por-
tion of data with specific tags, it takes a lot of time to retrain the
model using a different set of hyper-parameters or even a new
model structure. The robustness of dynamic online learning for
most deep learning based models are not very good [12, 13].

One possible solution for the first issue is by weighted sam-
pling the data, i.e. oversampling the minority tags and under-
sampling the majority ones. However, this method may dis-
tort the original distribution of data, hence may degrade model’s
performance[14, 15]. The second issue is even harder to over-
come, as over-fitting is a direct trade-off of using a more com-
plex model, which is the direction most recent works follow.
Some techniques, like regularization, dropout or max norm con-
straints [16, 17, 18], can resolve the over-fitting issue to some
extend, but still may not work very well if the model structure
becomes even more complex. For the third issue, one possible
solution is to save the trained model and the wrongly labeled
results, then continue to train the model using more data under
the same tags as the mislabeled data. This approach, however,
may adversely affect model’s performance on correctly labeled
data as well.

In this paper, a DRL based multimodal coaching model
(DCM) for slot filling is proposed. The new model will use a
DRL based slot filling model as introduced in [1], by adding in
user’s coaching as another modal, such that the correct tags of
the wrongly labeled data can be taught by the users during train-
ing and the same mistakes won’t happen again in testing. The
advantage of this approach is the it is a compensatory model
to make up the mistakes made by the deep learning based se-
quence labeling models, without changing the original model
structure or re-sampling the data, hence solves the issue caused
by the imbalanced data and over-fitting. Also, a new experience
replay technique named as partially-fixed experience replay is
proposed to achieve a faster on-line teaching without the need
of retraining the entire model .

The structure of this paper is organized as following: a brief
overview of our baseline RNN model is given in section 2. Sec-
tion 3 will discuss the new proposed DRL based coaching sys-
tem, and how it works with existing stat-of-the-art RNN based
models described in section 2. In section 4, the algorithm will
be tested on two datasets, one is the benchmark ATIS dataset
and the other is our in-house dataset with three domains. Fur-
thermore, a user based coaching demo is given to illustrate how
our model’s performance can be further enhanced by fast online
training using user instructions.

2. Baseline Model
In this section, we will give a brief overview of the baseline
RNN model used in our system. This model also gives the pre-
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Figure 1: Attention based Bidirectional LSTM for Slot Filling

vious state-of-the-art result on ATIS dataset for slot filling task.
Slot filling task is one of the most important tasks in spo-

ken language understanding. It sequentially labels the words
in an utterance using the pre-defined slot labels. The most
straight-forward approach is to use a single recurrent neural net-
work (RNN) to generate sequential tags of an utterance word by
word [2]. This approach has one constraint that the number of
tags generated should be the same as that of words in an ut-
terance. One possible approach to overcome this limitation is
the encoder-decoder model, in which the number of decoder’s
output can be different from that of the encoder’s input [6].

The current state-of-the-art model which has the best per-
formance on ATIS datatset is an attention based bidirectional
RNN model as in [6]. A brief discussion about this approach
will be given in this section. The model will be used as:
1. One of the baseline models for comparison in experiment
section
2. The base RNN model to coarsely process the input word se-
quence and then generate the filtered training data for the DRL
based coaching model (DCM).

The model introduced in [6] covers both of the intent detec-
tion and slot filling tasks. Considering the focus of this paper,
we only discuss the slot filling part of the model. The struc-
ture of the attention based RNN model for slot filling task is as
shown in Figure 1, where a bidirectional LSTM is selected as
its RNN model structure. As shown in the figure, a contextual
vector ci(·) is defined using the attention of hidden states hj :

ci =
L∑

j=1

αi,jhj (1)

where αi,j is the attention coefficient defined as:

αi,j =
eei,j∑L

k=1 e
ei,k

ei,k = φ(si−1, hk)

(2)

where φ(·) is a feed-forward neural network.
This model consists of two main properties:
1. It uses a Bi-direction LSTM (BLSTM) structure to capture
the long-term dependencies in both directions.
2. The attention vector ci gives additional contextual infor-
mation, for which cannot be captured by the hidden states in
BLSTM.

3. Deep Reinforcement Learning based
Multimodal Coaching Model (DCM)

In this section, a novel deep reinforcement learning (DRL)
based multimodal coaching model is proposed to address the
issues as described earlier. The new system is built upon an
existing recurrent neural network (RNN) based model frnn for
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Figure 2: Training Structure of DCM

slot filling. As mentioned earlier, the deep reinforcement learn-
ing based multimodal coaching model (DCM) fcoach, can be
trained either by the given data or coached by users, in order
to generate the correct tags labeled wrongly by the frnn orig-
inally. Hence it can compensate the weakness of the original
RNN based model.

3.1. Training Model Design

In this subsection, a detailed analysis of the design of the DRL
based multimodal coaching model (DCM) for slot tagging is
given. Following the definitions of reinforcement learning (RL)
as in [19, 20, 21, 22], we will show the design of three main RL
components, i.e. the states st, the actions at and the rewards rt.
Also a brief discussion on our DRL based training algorithm
using experience replay is given. Before the discussion, the en-
tire training structure of DCM is as shown in Figure (2), which
contains several steps:
Step 1: Pre-train an RNN based tagging model frnn using the
training data (xtrain, ytrain).
Step 2: Use the pre-trained RNN model frnn to generate the
predicted outputs ypredict and compare it with the ground
truth ytrain. The corrected tagged data pairs are labeled as
(xrnn, yrnn)
Step 3: Filter out the correctly labeled data and leave the ones
with wrong labels, i.e. xtrain\rnn. Use the word tokens wi in
xtrain\rnn with their correct labels li in ytrain\rnn to generate
the state st (as described next) for training the coaching model
fdcm.

The DRL based structure’s design follows the model set-
up as in [1], which contains several elements, including states,
actions, rewards and etc. A brief overview is given as following:
States (st): The DCM model’s state st is as shown in Figure
3. The state is defined by each word/token wi from its input
wi ∈ xtrain\rnn, it mainly contains two parts of information:
the first part is the word level information represented by an
n-gram (n is odd) averaged vector vi, and the other part is a
given label li of wi, i.e. st = [vi, li] . During the generation
of training states, li uses all possible tags for the word/token
wi. vi is defined as the average of the vector of word sequences
from wi−(n−1)/2 to wi+(n−1)/2, where wj is the center of this
sequence:

vi =
1

n

j=i+(n−1)/2∑

j=i−(n−1)/2

wj (3)

Remarks: The reason to use an n-gram vector vi to substitute
wi as a word level information in a state is because that we
want to better capture the contextual information compared to
that using a single word vector. When n = 1, vi is the same as
word vector wi. Also, the average of fewer words/tokens can be
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Figure 4: Action of DCM

used if the index of word sequences is out of the boundary of an
input sentence.
Actions (at): The DCM model’s action at at time step t is de-
fined as in Figure 4. Each action gives a transition signal such
that the state will change from its current label li to its next la-
bel lj by keep the same n-gram vector vi. Simply speaking, the
action setA contains all possible labels/tags for the word vector
wi or its correspond n-gram substitute vi. At each time step t,
the action at with the highest predicted action-reward value is
chosen as:

at = argmax
a

Q(st, a|a ∈ A, θt) (4)

where Q(·) is the estimated action-value function generated by
the neural network in DCM model at each step, which follows
its definition in DQN as in [22]. By taking the action at, an
agent will transit from its current state to the state with a new
label that is directed by at.
Rewards (rt): The reward defined at a state st containing an n-
gram vector vi (with a center word/token wi) will use the one-
hot representation ol∗i of wi’s true label l∗i , the one-hot vector
oli of the label li in current state st, and the predicted probabil-
ity pi for the word wi using frnn as:

rt =

{
1 if |ol∗i − pi||2 > ||oli − ol∗i ||2
−1 otherwise

(5)

where || · ||2 is the L2 norm.
The reward is defined by comparing the distance from frnn

predicted label to w′is true label and that from current state’s
label to its true label. The insight behind this definition is that a
positive reward should be assigned to a state in which its label is
more closer to the true label compared with the frnn’s predicted
one. The reward function is one of the key factors to get further
performance improvement using our new augmented tagger.
Remarks:
1. It is worth noticing that pi should be generated by frnn us-
ing the same word sequence as preparing vi. Similarly, l∗i is the
true label of wi in the same sentence of preparing pi and vi.
2. In our setup, we use multiple cascaded modals (including
a RNN model and a DRL model) to improve the system per-
formance. This idea of using multiple modals’/models’ collec-
tive information has been widely used in system identification
[23, 24, 25, 26], reinforcement learning [27, 28, 29] and also
deep neural networks/deep learning (in NLP)[30, 31]. It has
been shown as an effective approach to boost the model’s per-
formance both theoretically and empirically.
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Training DCM using Experience Replay: One training tech-
nique we borrowed from [22, 32, 33] is the experience re-
play used in DQN. It improves the convergence issue in neu-
ral network-estimator based DRL by storing the state st visited
before, action performed at, state’s reward rt and the next state
st+1 after performing the action at in an experience tuple (st,rt,
at, st+1). This tuple is then pushed into the experience replay
memory queueM . Whenever an action is performed then a new
state is arrived, the past experience tuple will be pushed into the
replay memory queueM following First-in First-out (FIFO). At
each training iteration, a random tuple is selected from M and
the loss function value is calculated based on the st, rt, at and
st+1 in the tuple.

3.2. Model Inference

As shown in Figure 5, the inference part of DCM is a bit dif-
ferent from training DCM. Since there is no ground truth dur-
ing inference, in order to filter those data that may be labeled
wrongly by frnn, a threshold value Tr is defined. All the tokens
with their predicted tags’ probabilities pi below Tr are used as
the inference input of DCM, i.e. wi ∈ xtest\test rnn. The out-
puts of DCM are the actions that can transfer the tokens from
their current states to the states with their target label l∗i .

3.3. Coaching the System by Users

Beside the DRL based modal in DCM can improve a conven-
tional RNN tagging model by using the wrongly labeled data,
another important modal of DCM is the user coaching modal,
in which the system can also be further coached by users in
an online manner. During the inference, the model allows a
user to select the correct labels of the words from its input, i.e
xtest\test rnn, and then retrain the model, which is as shown in
the dashed box in Figure 5. The retraining step is the same as
that in section 3.1, except two aspects:
1. A new state suser = [vuser, luser] is generated based on
user input, and put together with the selected words’s current
state st = [vuser, li] as the experience replay tuple (st,rt, at,
suser).
2. During experience replay, the model fixes the tuple(s) (st,rt,
at, suser) containing user instructions in its replay memory M ,
and only push in/pop out other states. Since the tuple(s) storing
user instruction(s) is/are always in the memory, it has a higher
chance to be selected and further trained. In practice, it gives
us a much faster online training performance, hence one-shot
learning can be achieved.

4. Experiment
The experiment consists of two set-ups: one set-up uses DCM
only to coach the system without user’s feedback, and the
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Figure 6: DCM with user coaching

other set-up takes the user’s instruction and retraining the DCM
model during the inference. The performance comparison is
based on their F1 scores.

4.1. Data Sets

Two datasets are used in the experiments, one is the the public
ATIS dataset [34] containing utterances of flight reservations,
and the other is our self-collected dataset in three different do-
mains: Food, Home and Movie. The ATIS dataset used in this
paper follows the same format as in [6, 3, 35, 4], which contains
4978 utterance in training set and 893 utterance in test set, the
total number of slot tags is 127. For our self-collected dataset, it
contains three domains: food, home and movie.There are 15 se-
mantic tags in food domain, 16 semantic tags in home domain,
14 semantic tags in movie domain.

4.2. Training Setup

The neural network structure of the DRL in our DCM is chosen
as LSTM, the number of LSTM states is chosen as 200. The
averaged word vector in a reinforcement learning state is chosen
as a trigram, i.e. n=3. The discount factor is chosen as γ =
0.9 and the threshold Tr for inference is set as 0.9. The size
of word embedding is 128, which are initialized randomly at
the beginning of the experiment. The pre-trained RNN tagging
model frnn is chosen as the attention based BLSTM structure
as illustrated in section 2, with a set-up follows [6]: the number
of state in is 128, the drop out rate is 0.5 and batch size is 16.
The models are trained individually on single Nvidia M40 GPU.

4.3. Performance of DCM with/without user coaching

The experiment is conducted using two different set-ups: one is
a self-learning DCM model only based on the filtered states gen-
erated by frnn and the threshold Tr , the other set-up takes the
user/coach’s input such that one-shot learning can be achieved.
For the second scenario, in order to interact with users, a coach-
ing app is also developed on an andriod mobile as shown in
Figure 6. During the inference, a small number of k sentences
(here is chosen as k = 5) with tags below the threshold Tr are
selected from the entire data input of DCM, and to be corrected
by the user, as shown in Figure 6(a) and 6(b). Then the DCM
on our server is retrained using the corrected user inputs for 30
seconds. Figure 6(c) shows the outputs using the same and a
similar input after DCM is retrained, which gives the correct
output tags correspondingly.

To future evaluate the DCM model in a more quantitative
manner, the test result on ATIS by using DCM with/without
user’s coaching is as shown in Table 1, by comparing it with
the other existing algorithms. The number of sentences for user

coaching is selected as k = {5, 20}. Also, the performance
of the model using self-collected data in three other domains is
as shown in Table 2. It can be observed that the DCM struc-

Table 1: Performance of Different Models on ATIS Dataset

Model F1 Score

Recursive NN [2] 93.96%
RNN with Label Sampling [3] 94.89%

Hybrid RNN [35] 95.06%
RNN-EM [36] 95.25%
CNN CRF [4] 95.35%

Encoder-labeler Deep LSTM [5] 95.66%
Attention Encoder-Decoder NN [6] 95.87%

Attention BSLTM [6] 95.98%

DCM without user coaching 96.75%
DCM with user coaching (k = 5) 97.26%

DCM with user coaching (k = 20) 98.24%

Table 2: Performance of Different Models on Self-Collected
Dataset

Domain Model Size F1 Score

Movie
Attention BLSTM 979 92.1%

DCM without user coaching 979 92.7%
DCM with user coaching (k = 5) 979 94.8%

DCM with user coaching (k = 20) 979 95.2%

Food
Attention BLSTM 983 92.3%

DCM without user’s coaching 983 93.8%
DCM with user coaching (k = 5) 983 95.8%

DCM with user coaching (k = 20) 983 96.4%

Home
Attention BLSTM 689 96.5%

DCM without user coaching 689 97.3%
DCM with user coaching (k = 5) 689 97.6%

DCM with user coaching (k = 20) 689 98.2%

ture without user coaching outperform the current state-of-the-
art method by 0.77% on ATIS and 0.5% to 0.8% on our own
three domains. The reason behind it can be simply explained:
the new DCM structure is built upon the current best tagging
model and future improves it by learning from its wrongly la-
beled slots. It coaches frnn whenever it fails or gives low qual-
ity predictions. The performance of the models with user coach-
ing is even better, giving 2.26% higher F1 scores than the cur-
rent state-of-the-art result on ATIS dataset, and 1.7% to 4.1%
better F1 score on our own three domains datasets. Though the
comparison between DCM with user coaching and other models
is not very fair since extra information from user side is used,
considering the short retraining time needed (30 seconds in our
set-up), however, the user based approach has great potential
for online fast teaching and learning, which can be extended to
general labeling tasks.

5. Conclusion
In this paper, a new DRL based coaching model with/without
user’s feedback for slot filling is designed. The system uses
DCM to coach the entire tagging model when ”unsatisfied re-
sults” (below a threshold Tr) are generated. Furthermore, the
model is designed in a manner that users can also teach the
system based on their knowledge, which can be learned by
the system in one-shot. The results generated by the DCM
with/without user’s input outperform the state-of-the-art mod-
els on public ATIS dataset and our own in-house dataset. More
importantly, as shown in the demo, the DCM has great potential
as a fast on-line coaching model for general labeling tasks.
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