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Abstract

Although it is generally accepted that different broad phone
classes (BPCs) have different production mechanisms and are
better described by different types of features, most automatic
speech recognition (ASR) systems use the same features and
decision criteria for all phones. Motivated by this observa-
tion, this paper proposes a two-level DNN structure, referred
to as a BPC-DNN, inspired by the notion of a topological man-
ifold. In the first level, several small separate BPC-dependent
DNNs are applied to different broad phonetic classes, and in
the second level the outputs of these DNNs are fused to obtain
senone-dependent posterior probabilities, which can be used for
frame level classification or integrated into Viterbi decoding for
phone recognition. In a previous paper using this approach we
reported improved frame classification accuracy on the TIMIT
corpus compared with a conventional DNN. The contribution
of the present paper is to demonstrate that this advantage ex-
tends to full phone recognition. Our most recent results show
that the BPC-DNN achieves reductions in error rate relative to a
conventional DNN of 16% and 8% for frame classification and
phone recognition, respectively.
Index Terms: manifold learning, phone classification, speech
recognition, neural network, broad phone classes

1. Introduction
State-of-the-art automatic speech recognition (ASR) systems
use a single deep neural network (DNN) to define a mapping f
from the “acoustic space” A to the space P of vectors of phone
(or senone) posterior probabilities, which are integrated into the
Viterbi decoder for speech recognition. Although this is a single
continuous mapping, in practice the DNN is trained to approx-
imate a discontinuous function f whose outputs typically jump
between 0 and 1 across phone state boundaries. Therefore, it
may be advantageous to think of f as a set of continuous func-
tions {f1, · · · , fJ} , with each function fj defined on a subset
Aj ⊂ A of the acoustic space and

⋃J
j=1 Aj = A. In this case

the appropriate mathematical structure is a non-linear topolog-
ical manifold. There have been few studies that have shown
the benefits of coding the acoustic speech signal in a non-linear
manifold space [1, 2, 3].

In context of speech analysis, the manifold structure pro-
vides a tool to exploit the fact that different phonetic classes
employ different production mechanisms and are best described
by different types of features. Intuitively, one might hope that
the subsets Aj correspond to broad phonetic categories. The
idea of phone-dependent feature extraction is well-established.
For example, while vocal tract resonance frequencies provide
a natural description of vowels, unvoiced consonants are better
described in terms of duration and mean energies in key fre-
quency bands [4, 5, 6, 7, 8, 9, 10]. There are also a number

of studies that use BPC-dependent classifiers to focus on subtle
differences between phones within a BPC [11].

A two-level linear computational model motivated by these
considerations is presented in [12]. The first level comprises a
set of discriminative linear transforms, one for each of a set of
overlapping broad phone classes (BPCs), that are used for fea-
ture extraction. The transforms are obtained using variants of
linear discriminant analysis (LDA). Each transform is applied to
an acoustic feature vector and k-nearest neighbour methods are
used to estimate probabilities of BPCs and phones, which are
then combined in the second level to estimate posterior prob-
abilities and hence to classify the acoustic vector. This two-
level linear classifier obtained slightly better results compared
to a single transform on frame-level phone classification exper-
iments on TIMIT [13].

Inspired by these observations, in our previous study [14]
we introduced a two-level non-linear model, referred to as a
BPC-DNN. Our premise was that it would be advantageous
to replace a single ‘global’ DNN with several BPC-dependent
DNNs. In the first level of the BPC-DNN, several small, sep-
arate DNNs were applied to different BPCs. For each BPC, a
DNN was trained to map acoustic features onto a vector of pos-
terior probabilities of the phones or senones within the BPC,
plus an “outside-BPC” class. In the second level the outputs of
these DNNs were passed as input to another DNN, the fusion
network, which transformed them into a single phone or senone
posterior probability vector, which was used for frame level
classification. The BPC-DNN is related to Wu and Gales’ multi-
basis adaptive neural network (MBANN) [15], in which parallel
component DNNs correspond to different speaker types.

An obstacle to the application of a topological manifold
model to acoustic speech analysis is the need to cover the acous-
tic space A with phonetically meaningful subsets Ai on which
the “feature extraction” transforms fi are defined. In the ap-
proach described here this problem is avoided by applying the
BPC-dependent DNN for a particular BPC to the whole of A
but only mapping frames corresponding to phones in the BPC
to the correct phone class. All other frames are mapped to the
“outside-BPC” category.

It was shown in [14] that the BPC-DNN model gives statis-
tically significant improvements in phone-classification of fea-
ture vectors, compared with a single global DNN. The contri-
bution of the present paper is to extend this work to full phone
recognition by passing the output of the fusion network to a
Viterbi decoder.

2. Broad Phone Classes
Broad phonetic classes are defined in terms of a common artic-
ulatory strategy that is used in their production. In a BPC-DNN
the component DNNs correspond to BPCs or combinations of
BPCs. The elements of the TIMIT 49 phone set are partitioned
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into 8 non-overlapping BPCs, referred to as {G1, · · · , G8}
in Table 1. Consonants are divided into “plosives”, “strong
fricatives”, “weak fricatives” and “nasals/flaps” (G1, · · · , G4),
liquids and glides are considered as “semi-vowels” (G5), the
vowels are grouped into “short vowels” and “long vowels”
(G6, G7).We also define 6 ‘super’ phone classes {G9, · · ·G14},
which are the union of two or more BPCs from {G1, · · · , G8},
to combine broad classes that are frequently confused. These
are the BPCs from [12].

Table 1: Broad phone classes and super classes.

Group Phonetic class Phone labels
G1 Plosive /b/, /d/, /g/, /k/, /p/, /t/
G2 Strong fricative /ch/, /jh/, /s/, /sh/, /z/, /zh/
G3 Weak fricative /dh/, /f/, /hh/, /th/, /v/
G4 Nasal/Flap /dx/, /en/, /m/, /n/, /ng/
G5 Semi-vowel /el/, /l/, /r/, /w/, /y/
G6 Short vowel /aa/, /ae/, /ah/, /ax/, /eh/,

/ih/, /ix/, /uh/
G7 Long vowel /ao/, /aw/, /ay/, /er/, /ey/,

/iy/, /ow/, /oy/, /uw/
G8 Silence /cl/, /epi/, /q/, /sil/, /vcl/
G9 G5 ∪G6 ∪G7 Semi-vowel, Short vowel,

Long vowel
G10 G1 ∪G3 Plosive, Weak fricative
G11 G5 ∪G6 Semi-vowel, Short vowel
G12 G5 ∪G7 Semi-vowel, Long vowel
G13 G6 ∪G7 Short vowel, Long vowel
G14 G1 ∪G2 ∪ ... ∪G8 All phones

3. A Two-Level Broad Phone Class DNN
(BPC-DNN)

3.1. Upper level: BPC-dependent DNNs

The input to the ith DNN in the upper-level of the BPC-DNN
is a filter-bank feature vector in context, and the output is a set
of ni + 1 posterior probabilites, one for each of the ni phone
or senone classes in the ith BPC plus an additional “not in the
BPC” probability. In this way all of the training data is used
to train each upper-level DNN and the need to identify a subset
Ai of the acoustic feature space A corresponding the ith BPC is
avoided. We explored the use of different combination of BPCs.

3.2. Lower level: single fusion Network

The outputs of all of the upper-level BPC-dependent DNNs are
concatenated to form the input to the lower-level fusion net-
work. The output nodes of the fusion DNN correspond to the
posterior probabilities of all of the phones or senones in the
complete phone set. In the present implementation the fusion
network has a single hidden layer. The structure of a two-level
BPC-DNN is shown in Figure 1.

4. Experiments with phone-level alignments
This section compares phone-level frame classification and
phone recognition results obtained with a conventional single
global DNN and a two-layer BPC-DNN system described in
Section (3).

Figure 1: The structure of a BPC-dependent neural network.

4.1. Data and features

Experiments were performed on the 16kHz TIMIT speech cor-
pus [13] which has 6300 sentences recorded from 630 speak-
ers. The SA recordings were excluded, hence there are 3696
utterances and 192 utterances in the training and test set, re-
spectively. The 61 phone set used in TIMIT labels is mapped
to the 49 phone set [16] for training and testing then be further
reduced to 40 [16] for evaluating the results.

4.2. Baseline systems

The baseline ASR model (BASE MONO1) is a hybrid deep
neural network - hidden Markov model (DNN-HMM) trained
using the Kaldi toolkit [17]. The speech was encoded as
MFCC vectors plus delta and delta-delta coefficients (39 param-
eters) and used to train a single state monophone HMM system
(hence there is no distinction between phone and senone labels).
The alignments from this monophone model were subsequently
used to train a baseline DNN with three hidden layers, each with
1024 nodes.

The inputs to the DNN were 26 dimensional filter-bank fea-
tures with a context of 11 frames (i.e. ±5 frames). The output
layer is a softmax layer with 49 nodes corresponding to the pos-
terior probabilities of each of the 49 phones.

We evaluated this model in terms of both frame accuracy
and percentage phone recognition error. A bi-gram language
model trained on the transcriptions in the training set was used
for phone recognition. The results are shown in Table 4 (first
row).

4.3. BPC-DNN systems (one state per phone)

Each BPC-DNN corresponds to a set of BPCs, which deter-
mine the number of BPC-dependent DNNs in the upper layer.
We considered five different sets, referred to as D1, · · · , D5 in
Table 2. D1 consists of the 8 non-overlapping BPCs from Table
(1), while D2 to D5 also includes some of the “super groups”.

The input features for each local network are the same 26
dimensional filter-bank features with a context of ±5 frames.
Each of the local BPC-dependent DNNs in the upper layer has
3 hidden layers each with 256 nodes. The phone alignment
from the baseline model is modified to train the BPC-dependent
DNNs in the upper layer. For BPC Gi, the labels in the align-
ment which correspond to phones in Gi are kept unchanged
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Table 2: Sets D1, · · · , D5 of BPCs used to train BPC-DNNs.

Broad phone class Experimental setup
D1 D2 D3 D4 D5

G1 - G8 X X X X
G9 X X
G10 X X X
G11 X X
G12 X X
G13 X X
G14 X
# of local DNNs 8 9 10 12 13
total out-nodes in mono1 57 80 92 116 165
total out-nodes in mono3 155 222 256 324 471

while the labels which are not in Gi are all mapped to the same
“out-of-group” phone label.

For example, D1 consists of the 8 BPCs G1, · · · , G8 con-
taining 6, 6, 5, 5, 5, 8, 9 and 5 phones, respectively. Since each
BPC-dependent DNN in the upper layer also contains a “not in
this class” output, the total number of outputs from the upper
layer (inputs to the lower layer) is 49+ 8 = 57. The number of
output nodes from all of the BPC-dependent DNNs in the upper
layer for each Di are shown in Table 2. The original mono-
phone alignment was used to train the fusion network and thus
there are 49 output nodes in this network. We only use one hid-
den layer in the fusion network, but we explored the influence
of different number of hidden nodes. We also explored the use
of context in the posterior probability vectors that are input to
the fusion network.

The results of experiments using 32 and 64 hidden nodes
in the fusion DNN, without context (32 0 and 64 0) and with
a context of ±5 phone posterior probability vectors in the in-
put layer (32 5 and 64 5) are shown in Figure 2. The horizon-
tal red dashed line shows the results obtained using the base-
line global DNN. All of the results are with respect to the stan-
dard 40 phone TIMIT set. The figures show that the two-layer
DNNs, with BPC-dependent neural networks in the upper layer
and a fusion DNN in the lower layer, outperform the baseline
global DNN both in terms of frame accuracy and phone error
rate.

Table 3: Number of parameters (millions) in the 1-state and 3-
state per phone-HMM BPC-HMM systems. The corresponding
single DNN baseline systems have 2.44 and 2.54 parameters,
respectively.

# of states Fusion D1 D2 D3 D4 D5per phone NN

1 state

32 0 1.66 1.87 2.08 2.50 2.72
32 5 1.68 1.90 2.11 2.53 2.76
64 0 1.66 1.87 2.08 2.50 2.72
64 5 1.70 1.93 2.14 2.58 2.83

3 states

32 0 1.69 1.91 2.13 2.56 2.81
32 5 1.74 1.99 2.21 2.66 2.96
64 0 1.70 1.93 2.14 2.57 2.83
64 5 1.80 2.07 2.31 2.78 3.13

For frame classification (Figure 2, top figure), the two-layer
BPC-DNN systems corresponding to D4 and D5 with a context

of±5 frames in the input to the fusion DNN achieve a reduction
in frame classification error rate of approximately 13% relative
to the baseline system. The only cases where the performance
of the two-layer system is poorer than the single global baseline
network are the experiments for D1 without context in the input
to the fusion layer (these are the blue and green columns on the
left of Figure 2). However, these two-layer BPC-DNNs have
fewer parameters than the baseline DNN.

For phone recognition (Figure 2, bottom figure), the phone
error rates for the two-layer BPC-DNNs are again lower than
for the baseline system except for those systems corresponding
to D1 without context in the input to the fusion network. The
best system corresponds to D5, with 32 units in the hidden layer
of the fusion DNN and a context of ±5 frames for the input to
the fusion DNN. This system achieves a reduction in error rate
of approximately 4% relative to the baseline.

The number of parameters for each system are shown in the
top part of Table 3.
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Figure 2: Percentage Frame accuracy (top) and percentage
phone error rate (bottom) for experiments with 32 and 64 hid-
den nodes and a context of ±0 and ±5 frames in the input to
the fusion DNN, using the phone-level labels.

5. Experiments with state-level alignments
For phone recognition, in contrast with the systems described in
Section (4), it is normal to use 3 states per phone-level HMM.
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This section presents results for frame classification and phone
recognition using senone-level alignments obtained with 3 state
phone-level HMMs.

5.1. Baseline

A baseline DNN (BASE MONO3) was trained using the same
features and hidden layer structures as in section 4.2, but with
different alignments. We trained a monophone GMM-HMM
system with 3 states per phone-HMM. In this system there are
147 phone states and the output layer of the BASE MONO3
DNN has 147 nodes representing the posterior probabilities of
these 147 HMM states. The results are shown in Table 4 (second
row).

5.2. BPC-DNN systems (three states per phone)

The alignments from sub-section (5.1) that were used to train
the baseline were also used in training the BPC-DNNs. When
training a local BPC-specfic DNN, the HMM states in the align-
ment corresponding to phones that are not in this group were
again mapped to a “out-of-group” node. We explored the use
of combinations BPC-dependent DNNs for the different combi-
nations of BPCs (D1, · · · , D5) from Table 2. For each Di, the
total number of output nodes of the local networks are shown in
the last row of Table 2. Again we only used one hidden layer in
the fusion network, but with different numbers of hidden nodes
(32 or 64), and contexts of 0 or ±5 frames on the input layer of
the fusion network.

The frame accuracies and the phone error rate are shown in
Figure 3. The number of parameters in each system are shown
in the bottom part of Table 3.

Table 4: Percentage frame accuracies (%FAC) for 147, 49 and
40 targets, and percentage phone error rates (%PER) for the
baseline DNN models (base 1 and base 3) and the best per-
forming BPC-DNNs (BPC 1 and BPC 3) with 1 and 3 states
per phone.

%FAC-147 %FAC-49 %FAC-40 %PER

base 1 - 69.69 72.59 27.2
base 3 61.69 69.64 72.49 26.7
BPC 1 - 73.98 76.52 26.1
BPC 3 66.35 74.46 77.00 25.1

For frame classification (Figure 3, top figure), all of the two-
layer BPC-DNN systems outperform the baseline. The best per-
formance, corresponding to D5 with a context of ±5 frames in
the input to the fusion DNN, achieves a reduction in frame clas-
sification error rate of approximately 16% relative to the base-
line system. However this BPC-DNN system also has approxi-
mately 23% more parameters than the baseline. For BPC-DNN
D4 with no context the number of parameters is similar to the
baseline and the reduction in frame classification error is ap-
proximately 4%.

For phone recognition (Figure 3, bottom figure), all of the
two-layer BPC-DNN systems again outperform the baseline.
With a context of ±5 the BPC-HMM systems corresponding
to D2, D3, D4 and D5 all achieve a reduction in phone error
rate of approximately 6% relative to the baseline. In the cases
of D2 and D3 this is achieved with fewer parameters than the
baseline.

D1 D2 D3 D4 D5
Experimental setup

70

72

74

76

78

80

Fr
am

e 
ac

cu
ra

cy
 (%

)

Frame accuracy for experiments with state-level labels
baseline
32_0
64_0
32_5
64_5

D1 D2 D3 D4 D5
Experimental setup

22

23

24

25

26

27

28

29

30

Ph
on

e 
er

ro
r r

at
e 

(%
)

Phone error rate for experiments with state-level labels
baseline
32_0
64_0
32_5
64_5

Figure 3: Percentage Frame accuracy (top) and percentage
phone error rate (bottom) for experiments with 32 and 64 hid-
den nodes and a context of ±0 and ±5 frames in the input to
the fusion DNN, using the state-level labels.

6. Conclusions and discussion
This paper describes ongoing research into the application of
DNN-based models inspired by the notion of topologial man-
ifold to speech analysis and recognition (BPC-DNNs). Our
premise is that such a model is of interest because it reflects
the fact that different types of speech sound, corresponding to
different modes of production, lend themselves naturally to dif-
ferent types of acoustic analysis. The main conclusion from this
work is that the improvement in frame phone classification ac-
curacy previously reported using BPC-DNNs can be extended
to phone recognition. Specifically, we obtain a reduction in
phone error rate of 6% relative to a conventional DNN using
a BPC-DNN with fewer parameters.

The BPC-DNN only approximates a topological manifold
structure because the “local” mappings fi are implemented by
DNNs defined on the whole acoustic space A. This raises the
question of whether better performance, and more insight, could
be obtained with a more faithful manifold structure in which A
is covered by proper subsets Ai. For example, if Ai ∩ Aj 6= ∅
and v ∈ Ai ∩ Aj then fi(v) and fj(v) could be interpreted as
alternative analyses of v from the perspective of different BPCs,
and therefore potentially different production mechanisms.
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