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Abstract
Subjective ratings of speech quality (SQ) are essential for eval-
uating algorithms for speech transmission and enhancement. In
this paper we explore a non-intrusive model for SQ prediction
based on the output of a deep neural net (DNN) from a regu-
lar automatic speech recognizer. The degradation of phoneme
probabilities obtained from the net is quantified with the mean
temporal distance proposed earlier for multi-stream ASR. The
SQ predicted with this method is compared with average subject
ratings from the TCD-VoIP speech quality database that cov-
ers several effects of SQ degradation that can occur in VoIP
applications such as clipping, packet loss, echo effects, back-
ground noise, and competing speakers. Our approach is tai-
lored to speech and therefore not applicable when quality is
degraded by a competing speaker, which is reflected by an in-
significant correlation between model output and subjective SQ.
In all other conditions mentioned above, the model reaches an
average correlation of r = 0.87, which is higher than the corre-
lation achieved with the baseline ITU-T P.563 (r = 0.71) and
the American National Standard ANIQUE+ (r = 0.75). Since
the most robust ASR system is not necessarily the best model to
predict SQ, we investigate the effect of the amount of training
data on quality prediction.
Index Terms: single-ended speech-quality prediction, deep
learning, mean temporal distance

1. Introduction
The perceived speech quality (SQ) is an important measure in
applications that range from telecommunication over speech en-
hancement algorithms to the design of hearing aid processing.
Several reference-based models such as PESQ [1] and POLQA
[2] have been proposed that provide good estimates of SQ, but
require a separate input of the original speech signal and a de-
graded version of that signal, which is not available in many
real-life applications. Several reference-free (or non-intrusive,
or single-ended) estimators for perceived SQ have been pro-
posed which only require a potentially distorted speech signal
as input. Two algorithms that were shown to produce accu-
rate predictions of subjective SQ are the ITU standard P.563 [3]
and ANIQUE+ [4], which is a standard of the American Na-
tional Standard Institute. P.563 estimates separate quality fea-
tures from signal characteristics such as the SNR, linear pre-
diction coefficients, and interruption indicators, and combines
them into the SQ prediction. ANIQUE+ estimates the per-
ceived speech quality by combining three intermediate mea-
sures of distortion, i.e., mute and non-speech distortion, as well
as frame distortion. The latter is quantified by performing a
spectral modulation analysis based on a perceptual model. SQ
models based on machine learning have been proposed by Falk

and Chan [5], which exploit intermediate features produced by
Gaussian mixture models, support vector machines and random
forest classifiers, which are integrated in an additional classifi-
cation step. A comprehensive overview speech quality predic-
tion algorithms is presented in [6].

In this paper, we explore a model that has been proposed for
the prediction of subjective listening effort of normal-hearing
and hearing-impaired listeners [7, 8] and for SQ prediction [9].
The model is based on Deep machine listening for Estimating
Speech Quality (DESQ). In contrast to our previous work [7, 8]
the model is blind with respect to speech signals, noise types,
and artefacts from speech enhancement algorithms. Further, all
previous approaches used a limited training set, i.e., the influ-
ence of the amount of training data on model prediction perfor-
mance remained unclear.

The model is based on a regular automatic speech recogni-
tion (ASR) system that combines a DNN with a hidden Markov
model (HMM). To produce SQ predictions, the output of the
DNN (representing phoneme probabilities) is quantified, since
it is potentially degraded in the presence of speech distortions,
which could relate to subjective SQ. As measure for quantifica-
tion, the mean temporal distance as proposed by Hermansky
and colleagues is used that was shown to accurately predict
phoneme error rates [10] and was later used for selecting the
optimal stream in a multi-stream ASR system [11].

Our model is evaluated using the TCD-VoIP database that
contains subjective ratings for signals distorted by VoIP artifacts
[12]. We analyze the correlation between the mean objective
scores (MOS) [13] and the model output, and compare the re-
sults to two baseline measures (ANIQUE+ and ITU P.563). To
obtain good SQ estimates, the ASR-based model should be af-
fected by signal distortions similar to listeners, which relates to
the robustness of the ASR system. We therefore analyze the in-
fluence of the amount of training data as well as techniques such
as state-level minimum Bayes risk (sMBR) [14] on the predic-
tive power of the model.

The remainder of this paper is structured as follows: The
general concept of the ASR-based model is described in the
next section, along with the ASR architecture, the correspond-
ing training data, as well as the SQ database. The results section
presents model performance in five different types of distortion.
Discussion and Summary are presented in Sections 4 and 5, re-
spectively.

2. Methods
2.1. Speech quality prediction system

The SQ model is created by first training a standard ASR sys-
tem that combines a feed-forward DNN (which serves as acous-
tic model) with an HMM. The training procedure is described
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in the next section in detail. We assume that phoneme posterior
probabilities from the DNN degrade in the presence of factors
that negatively affect speech quality, and quantify this degra-
dation by using the mean temporal distance (MTD) [10]. It
is based on the observation that signal distortions can result in
phoneme activations that are temporally smeared (cf. lower left
panel in Fig. 1, in which the class AH is over-proportionally ac-
tivated, and overall activations are less distinct than for the clean
case). Hence, the average difference D between two phoneme
vectors p with a temporal distance ∆t should be higher for clean
than for noisy vectors. As in the original proposal [10], we use
the symmetric Kullback-Leibler divergence as distance measure
D, and obtain the difference for a given ∆t for an segment of
length T between two phoneme vectors p(t) according to

M(∆t) =
1

T −∆t

T∑

t=∆t

D(pt−∆t,pt).

Since [10] reported the curve of M over ∆t to saturate
after 200 ms (which was attributed to coarticulation effects),
we obtain a scalar value by calculating and averagingM from
350 to 800 ms, i.e., the saturated and stable part of the curve.
In the following, the resulting scalar value is referred to as
mean temporal distance (MTD). Before calculating the MTD,
the context-dependent triphones from the DNN are grouped to
approximately 40 monophones. This allows to visualize the out-
put (Figure 1), is computationally cheaper, and produces sim-
ilar results than using triphone activations [15]. Note that a
forward-run of the model does not require a decoding step with
the HMM or a word transcript, since it relies on the DNN output
alone.

2.2. ASR system

The DNN was trained on 40-dimensional log-Mel-spectral co-
efficients features with a splicing of ±5 frames using the nnet1
recipe from the open source ASR software Kaldi [16]. The
DNN had six layers, each with 2048 neurons, a softmax output-
layer and a sigmoid-nonlinearity. Before training the DNN,
alignments for ≈3,400 triphones were created as training tar-
gets. This was done using a Gaussian Mixture Model - Hid-
den Markov Model (GMM-HMM) system with Mel-Frequency
Cepstral Coefficients (MFCCs) features with 13 components
per frame, to which the first and second numerical derivatives
(delta and double delta features) were appended. The MFCC for
the GMM features were adapted to each speaker with a Feature
Space Maximum Likelihood Linear Regression (fMLLR) [17]
on top of a Linear Discriminant Analysis (LDA) and Maximum
Likelihood Linear Transform (MLLT) [18].

The DNN was initialized with a layer-wise Restricted
Boltzmann Machine (RBM) pre-training [19]. This pre-trained
DNN was fine-tuned with frame cross-entropy (CE) training
[20]. With this fine-tuned DNN, new phonetic alignments were
created on which the pre-trained network was fine tuned again.
This complete procedure is a standard approach for training
ASR models in kaldi and has not been optimized for SQ pre-
diction. Additionally, we also tried five iterations of sMBR [14]
sequence-discriminant training on top of alignments generated
by the second fine-tuned DNN. During the training procedure
new alignments are created after the first iteration of the sMBR
sequence-discriminant training.
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Figure 1: Phoneme posteriorgrams for a clean speech segment
(upper left), and the five conditions of the TCD-VoIP database.

2.3. ASR training data

The WSJ1 speech corpus is used as basis training set. To inves-
tigate the effect of the size of the training data (and potentially
the trade-off between robustness of the ASR system and per-
formance of the SQ model), we created four additional train-
ing sets by random selection of 20 to 80% of the original ut-
terances in steps of 20%. The full SI284 set contains 37,416
utterances and 81.27 h from 283 speakers. To create training
sets which are similar to the Aurora4 multi-condition training
set, we added additive noise at random SNRs in the range of
10 dB to 20 dB to 75% of the utterances of each training set.
Finally, all files were filtered according to the ITU-T recom-
mendation P.341 [21]. We used the original Aurora4 maskers
as additive noise (airport, car, restaurant, subway, babble, exhi-
bition, street, train). To ensure that the DNN does not overfit to
the relatively short noise files from the Aurora 4 multi-condition
training set, we also added additional noises from the Bits and
Pieces sound effects library (http://www.bitsandpieces.co.uk/)
that are similar to the original selection. These include trade
show atmosphere, shopping centre atmosphere, crowds chatting
on street, town skyline, London street, self service restaurant at-
mosphere, book market atmosphere, airport arrivals hall atmo-
sphere, large theatre foyer atmosphere, motorway, networker
train, and commuter train.

2.4. Subjective listening data

We used the TCD-VoIP corpora [12] to evaluate our model.
This database contains subjective quality ratings in the pres-
ence of different degradations that can occur in VoIP applica-
tions, which are not limited to narrowband data. While the clean
speech is also available from in the database, only the corrupted
signals were used in our experiments. In the following all con-
ditions are briefly described:

• Clipping effects: The wav signal is multiplied with a fac-
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Figure 2: Model prediction for baseline models (top rows) and the proposed model (bottom row) and relation to mean objective score
of subjective listening effort. Each MOS data point represents the average scoring from 24 subjects on four files, resulting in 96 ratings.

tor between 1 and 55, causing some portion of the sam-
ples to be clipped (i.e. set to 1 or -1).

• Echo effects: One ore more copies of the signal are
added to the original signal with a delay between 0 and
220 ms and a relative amplitude of the first delayed ver-
sion related to the original between 0 and 0.5.

• Chopped speech: Samples with a length between 20 and
40 ms are either replaced with zeros, deleted entirely or
overwritten with the previous portion of samples at a rate
of 0 to 6 chops/s.

• Background noise: Car, street, office and babble noise
are additively mixed to the signal at SNRs between 5
and 55 dB. The noise files are taken from [22].

• Competing speakers: Two speakers (female/male, fe-
male/female, or male/male) talking in the background at
SNRs between 10 and 50 dB. The target speech starts
500 ms before the competing speakers.

All subjective data is recorded accordingly ITU-T Rec. P.800
[13] with 13 male and 11 female normal-hearing subjects (ex-
cept for the echo condition with 17 males and 7 females).

3. Results
Examples of the posteriorgrams computed with the DNN
trained with the full training data (without sMBR training) are
shown in Figure 1. This figure shows a sample of the audio file
with the worst subject rating for each condition to highlight dif-
ferences between conditions. The relation of the MOS to the
MTD, as well as to the baseline predictions are shown is Fig-
ure 2.

The DNN-based model shows high correlations (Pear-
son’s r) between MTD with the MOS for the first four
conditions. All correlations are highly significant (p ≤ 0.0002,

two-sided distribution), with the exception of the fifth condition
(competing speaker) for which the correlation is low and
insignificant (p=0.5). This can be attributed to the DNN not
distinguishing between the target and the competing speakers
since the overall approach is based on speaker-independent
ASR. We assume that the DNN activates the currently dom-
inant phoneme from the multi-speaker mixture — in this
case a three-speaker mixture — which would result in clear
activations (which are also visible in Figure 1, top right panel).
At the same time, a high word error rate would be obtained in
ASR tests since the phoneme sequences are incoherent. Since
the DNN-based system is not in principal suitable to predict the
speech quality for this condition, it is excluded from all further
analyses with the DNN-based model.
The baseline systems correlation are all significant (p ≤ 0.05)
except the correlation for the competing speaker condition
with the ANIQUE+ model (p = 0.069). For the additive
noise condition, both baseline systems reach slightly higher
correlations, but for the remaining three conditions (clip, echo
and chop) the DNN-based system clearly outperforms the two
baseline systems in terms of correlation with the subjective
ratings. This results in an average correlation of r̄ = 0.71 with
the ITU-T P.563, r̄ = 0.75 with ANIQUE+ and r̄ = 0.87 with
the DNN-based model.

Figure 3 shows the effect of the amount of training data on
model predictions. The 100% data points correspond to the cor-
relation values shown in Figure 2. While the ASR-based sys-
tems performance for the clipping condition is already on a very
high level with 20% of the training data, we find an average
improvement with increasing training data for the remaining
three conditions (echo, chop, noise). The echo condition has
the biggest performance increase in the first step from 20% to
40% with 5.7% rel. improvement. For the chop condition the
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Figure 3: SQ correlation between the perceived speech quality
and the MTD in dependency of the amount of ASR training data.
100% corresponds to the full WSJ1 data with 81.27h.
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Figure 4: Average correlation over the four working conditions
(clip, echo, chop, noise) in dependency of the amount of data
during training and the different training steps of the neural
network. Between every column of the matrix the alignments
are re-generated with the previous trained model.

performance increases the most until the 60% dataset and for
the noise condition the performance increases constantly over
all data sets with overall 21.6% rel. improvement.

The results with modified training procedures are presented
in Figure 4. The averaged values from Figure 3 correspond to
the second column of this figure, which corresponds to standard
training as described above.

In all training steps, r̄ increases (10.6% relative improve-
ment on average) with increasing training data size. Further-
more, the prediction performance decreases with ongoing train-
ing steps of the neural network. The only exception from this
trend is the second frame cross entropy (CE) training with 100%
of the data, which results in a slightly better performance. Nev-
ertheless, the discriminant sMBR training on this data also de-
grades the correlation of the MTD with the MOS.

Note that the worst performing DNN-based model (20%
data, five iterations of sMBR discriminant training) still reaches
a better average correlation r̄ = 0.76 than the two baseline
systems (ITU-T P.563: r̄ = 0.71, ANIQUE+: r̄ = 0.75).

4. Discussion
In this study, both the amount of training data as well as the
type of training were found to influence the ASR-based SQ
model. The best model performance is obtained for CE train-
ing 2 with 100% of the data which uses DNN-based alignments
(Figure 4. For smaller amounts of data, the best models are
found with GMM-based alignments (CE training 1) which can
be attributed to the fact that good GMM performance can be ob-
tained with smaller amounts of data which is in contrast to the
DNN model employed here. The application of sMBR train-
ing consistently degrades model performance independently of
the amount of training data. The sequence-discriminant training
tries to increase the likelihood ratio between the correct and in-

correct class (in this case triphone state). Hence, this results in
fewer false alarms in the posteriorgram. The basic assumption
of our model is that in noisy or otherwise degraded conditions
the posteriorgram smears and the KL-divergence decreases con-
sequentially. With sequence-discriminant training, this effect
is reduced and the correlation of the MTD with the MOS de-
creases. Nevertheless, the best average correlations in this study
were obtained by using the full data set (100% Wall Street Jour-
nal). It seems likely that the correlation curve shown in Figure 3
is not saturated and therefore higher correlations could be ob-
tained with a larger amount of training data. Prediction in the
noise condition has the largest potential for improvement since
it exhibits the lowest absolute MTD values and the lowest aver-
age correlation when omitting the condition with the competing
speaker, which is per se problematic for our model, as described
in Section 3.

Additional studies should be conducted to analyze if the
correlation values saturate when increasing the size of the train-
ing set, or if a local optimum in terms of model quality is
reached for a specific amount of data. The latter case could
occur if the model becomes too robust to certain distortions
so that the posteriorgram is not easily degraded and therefore
less informative than a model that was exposed to fewer train-
ing samples. Generally, it seems that the development of deep
learning has brought speech technology to a point at which it is
very interesting for modeling human speech perception. Xiong
and colleagues have closed the human-machine gap for con-
versational telephone speech [23], which indicates that humans
and machines are similarly affected by distortions in single-
channel data. Our results also show that the DNN output is ro-
bust enough to differentiate between severely distorted signals
but (still) sufficiently fragile so that small degradations affect
the DNN output.

A limitation of our current approach is that it is not suited
to predict SQ in the presence of a competing talker, since it is
tailored to speech and based on a speaker-independent training
set. Potentially, this limitation could be addressed by creating
speaker-specific acoustic models and adapting the DNN to a tar-
get speaker, which in turn would require collecting target speech
samples before test time.

5. Summary
This paper presented Deep machine listening for Estimating
Speech Quality (DESQ). The model is trained as regular ASR
system, but does not require a decoding step with an HMM
when it is applied. Instead, the phoneme representations ob-
tained from the DNN are quantified, which was shown to relate
to the perceived SQ for distorted VoIP communication as repre-
sented in the TCD-VoIP database. The DNN-based model fails
to predict SQ in the presence of background speakers, which
can be attributed to its speech-specific, speaker-independent de-
sign. In four other conditions, it produces an average correla-
tion of r = 0.87 and outperforms two baseline SQ models, i.e.,
ITU-T P.563 and ANIQUE+. We found its predictive power
to increase with larger amounts of training data, while sMBR
sequence-discriminant training was not beneficial for SQ pre-
diction with the proposed model.
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