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Abstract
This paper describes the systems developed by the Univer-

sity of Birmingham for the 2018 CALL Shared Task (ST) chal-
lenge. The task is to perform automatic assessment of gram-
matical and linguistic aspects of English spoken by German-
speaking Swiss teenagers. Our developed systems consist of
two components, automatic speech recognition (ASR) and text
processing (TP). We explore several ways of building a DNN-
HMM ASR system using out-of-domain AMI speech corpus
plus a limited amount of ST data. In development experiments
on the initial ST data, our final ASR system achieved the word-
error-rate (WER) of 12.00%, compared to 14.89% for the offi-
cial ST baseline DNN-HMM system. The WER of 9.28% was
achieved on the test set data. For TP component, we first post-
process the ASR output to deal with hesitations and then pass
this to a template-based grammar, which we expanded from the
provided baseline. We also developed a TP system based on
machine learning methods, which enables to better accommo-
date variability of spoken language. We also fused outputs from
several systems using a linear logistic regression. Our best sys-
tem submitted to the challenge achieved F -measure of 0.914,
D of 10.764 and Dfull score of 5.691 on the final test set.
Index Terms: Spoken CALL Shared Task, speech recognition,
text processing, DNN-HMM, rule-based grammar, word2vec

1. Introduction
Shared tasks have been a major factor in the development of
many areas of speech and language technology. The first shared
task (ST) for Computer Assisted Language Learning (CALL),
referred to as “2017 SLaTE CALL Shared Task”, was presented
in 2017 [1, 2]. This was led by the University of Geneva with
support from the University of Birmingham and Radboud Uni-
versity. Following the success of the first edition, the above
consortium of universities along with University of Cambridge
introduced this year the second edition of the ST [3]. The task is
using recordings from the German speaking Swiss teenagers in-
teracting with the CALL-SLT systems [4]. As part of the 2018
ST, a development set of 6698 recordings was released in Octo-
ber 2017. Each recording has a corresponding German prompt,
transcription, ASR output from a baseline DNN-HMM recog-
niser, and human judgments for grammar and semantic correct-
ness. The test set consists of 1000 recordings, each with a Ger-
man prompt. It was released in February 2018 and research
groups had 1 week to submit up to 3 judgment results made by
their developed systems.

This paper describes the three systems that we submitted to
the 2018 CALL Shared Task and also additional developments
we performed after the challenge submission deadline. Each
system consists of two components, automatic speech recogni-
tion (ASR) and text processing (TP). Our ASR system was de-
veloped using the Kaldi toolkit [5] and builds on the best ASR
system developed in the 2017 CALL Shared Task challenge [6].

For ASR training, we used a portion of the AMI corpus of un-
scripted speech [7]. This plus 90% of ST-DEV was used for
pre-training and training, followed by a final phase of train-
ing using only ST-DEV. The optimum amount of AMI train-
ing data (to balance with ST-DEV) and various parameters of
the ASR system were determined empirically in development
experiments on ST-DEV. For text processing we expanded the
baseline grammar to include word sequence patterns from ST-
DEV that were judged correct but were missing from the orig-
inal grammar. In addition, we also developed a text processing
system based on machine learning methods.

The rest of the paper is organised as follows. In section 2,
we briefly introduce the spoken CALL Shared Task challenge.
Sections 3 describes the ASR systems, section 4 and 5 intro-
duce the rule-based and machine learning based text processing
systems, respectively. Section 6 presents our final experiments
and results and section 7 gives conclusions.

2. Spoken CALL Shared Task Challenge
The Shared Task challenge is based on data collected from a
speech-enabled online tool CALL-SLT [8, 4], which has been
under development at the University of Geneva since 2009. The
system was designed to help young Swiss German teenagers to
practise skills in English conversation.

The items of data are prompt-response pairs, where the
prompt is a piece of German text and the response is an utter-
ance spoken in English and recorded as an audio file.

The task of the challenge is to label pairs as “accept” or
“reject”, accepting responses which are grammatically and lin-
guistically correct and rejecting those incorrect either in gram-
mar or meaning according to the judgments of a panel of human
listeners and machines [1, 2, 3].

The baseline system for the challenge consists of two com-
ponents, speech-processing and text-processing. Participants of
the challenge could work on one or both of the components. The
baseline system for the speech-processing component consisted
of a DNN-HMM ASR system which achieved best word-error-
rate in 2017 ST challenge [6]. For the text-processing compo-
nent, a baseline rule-based grammar was provided.

3. Automatic Speech Recognition
3.1. Training and Test Corpus

The training and test data of the 2018 Shared Task (ST2) were
released in October 2017 and February 2018, respectively. In
addition to this, we also used data released for the 2017 edi-
tion of Shared Task (ST1). The number of utterances and to-
tal length of each set are given in Table 1. Our ASR systems
were developed using the ST12 data. The ST2 train set, after
excluding sentences containing only silence, was split into 10
sub-sets and these were used to evaluate our best ASR system
from the 2017 ST edition. The ST12 dev set was formed to
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contain two sub-sets with the best and with the worst WER plus
the ST1 test. The remaining sub-sets of the ST2 train and all
the data in ST1 train formed the ST12 train set.

Table 1: Amount of the Shared Task 1 (ST1) and Shared Task 2
(ST2) data.

Data abbreviation Num. of utts Num. of hours

ST1 train 5222 4.80
ST1 test 996 0.89
ST2 train 6698 5.99
ST2 test 1000 0.91

ST12 train 10521 9.50
ST12 dev 1948 1.86

As the amount of ST data is limited, we also used an out-
of-domain speech data. We opted for the AMI corpus as it con-
tains conversational speech of native and non-native speakers.
The AMI corpus includes 100 hours audio recordings of meet-
ings made with 3 different conditions: recordings of indepen-
dent headset microphone (IHM), multiple distant microphone
(MDM) and single distant microphone (SDM). We explored
augmenting the ST training data with IHM and with SDM data.
The use of IHM data provided better recognition performance
and as such this was used in all of our developed ASR systems.

3.2. Baseline System

Our baseline ASR system is a hybrid deep neural network - hid-
den Markov model (DNN-HMM) built using Kaldi [5]. First,
39-dimensional Mel-frequency cepstral coefficients (MFCCs)
with first- and second-order derivatives were used to train a
GMM-HMM triphone model and produce the state level time
alignments. Then linear discriminant analysis (LDA) was ap-
plied on 91-dimensional vector of MFCCs, containing 13-
dimensional static MFCCs with context of 7 frames (i.e., ±3
frames), to decorrelate and reduce to 40-dimensional features.
After further decorrelating using maximum likelihood linear
transform, we applied feature space maximum likelihood linear
regression (fMLLR) to do speaker adaptation. These fMLLR
features and the new alignments were used to train a DNN.

The 40-dimensional fMLLR features were spliced in time
taking a context of 11 frames (i.e., ±5 frames) and used as the
input to a neural network with 6 hidden layers and 1024 neurons
at each layer. The output was a softmax layer with 3700 units.
We varied the amount of out-domain AMI data to obtain a ro-
bust model while keeping the characteristics of the in-domain
ST data. After the DNN model was trained, we removed the
output layer and fine-tuned the parameters only using the in-
domain data in order to adapt the model. Two DNN models
were trained using the procedure described above either with
20% (16.08 hours) or with 50% (40.64 hours) of the IHM data
together with the ST12 train and the models were then fine-
tuned using only ST12 train. The DNN models used to produce
the transcriptions for ST2 test were trained using the same pro-
cedure as described above but ST12 dev data were also included
into the training set.

We used a trigram language model (LM) trained on the
reference transcriptions of the ST data using the SRILM
toolkit [9]. The LM1 denotes model obtained based on the ref-
erence transcriptions of ST12 train and used during the ASR
development. The LM2 was trained on both the ST12 train and
the ST12 dev and used for the final experiments on ST2 test.

Results on ST12 dev and ST2 test are shown in Table 2.
Varying the amount of AMI-IHM data to augment the ST data
has a small effect on the recognition performance.

Table 2: Recognition results (%WER) obtained by DNN-HMM
system on the development and final test set, when using differ-
ent amount of AMI-IHM data and language model.

ASR model: DNN-HMM Test data
Data Aug Train LM ST12 dev ST2 test

IHM20 DEV LM1 12.68 9.62
IHM50 DEV LM1 12.64 9.78
IHM20 FINAL LM2 - 9.84
IHM50 FINAL LM2 - 10.01

3.3. Developed Systems

3.3.1. Long Short-Term Memory

Long short-term memory (LSTM) has often been shown to per-
form better than DNNs in large vocabulary speech recogni-
tion [10, 11, 12]. Our LSTM networks were trained based on the
alignments we obtained from our best DNN-HMM system. We
compared 13-dimensional MFCCs and 40-dimensional fMLLR
features, both with context of 5 frames (i.e. ±2 frames). To
make use of the information from the future frame, we delayed
the output HMM state label by 5 frames. The LSTM network
has 1024 memory cells, a hidden layer with 1024 units, a recur-
rent projection layer with 256 units and a non recurrent projec-
tion layer with 256 units. Results, presented in Table 3, show
that LSTMs trained on 20% of AMI-IHM perform better than
50% of AMI-IHM for the development model on ST12 dev and
also the final model on ST12 test. When comparing the results
of the two set of features, inconsistent performance improve-
ments on fMLLR features can be seen for different models.

Table 3: Recognition results (%WER) obtained by the LSTM
model on the development and final test set, when using different
amount of AMI-IHM data, features, and language model.

ASR model: LSTM Test data
Data Feat Train LM ST12 dev ST2 test

IHM20 MFCC DEV LM1 12.79 9.99
IHM20 fMLLR DEV LM1 12.11 10.21
IHM50 MFCC DEV LM1 12.82 8.65
IHM50 fMLLR DEV LM1 13.11 9.76
IHM20 MFCC FINAL LM2 - 8.82
IHM20 fMLLR FINAL LM2 - 9.60
IHM50 MFCC FINAL LM2 - 9.71
IHM50 fMLLR FINAL LM2 - 10.15

3.3.2. Sequence Discriminative Training

Systems in section 3.2 and 3.3.1 were trained to model the la-
bel posterior probability based on the cross-entropy criterion,
which treats each frame independently. However, speech recog-
nition is a sequence classification problem. Some sequence-
discriminative training techniques are popularly used in speech
recognition, including maximum mutual information (MMI),
boosted MMI (BMMI), minimum phone error (MPE) and min-
imum Bayes risk (MBR) training criteria. We used the state-
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level minimum Bayes risk (sMBR) [13] in our experiments. The
DNN-HMM system from section 3.2 was used as the base for
sequence training, which used 3 iterations and learning rate of
0.00001. For each iteration, the alignments and word lattices
were generated by decoding the ST12 train data using the cor-
responding cross-entropy trained DNN.

Results are shown in Table 4. Comparing the results in
Table 3 and Table 4, we can observe that during the develop-
ment stage the sMBR trained DNNs slightly outperformed the
LSTMs. The best WER is 12.00% by the sequence training
model using 50% of IHM. For the final model, the best WER of
8.82% was achieved by LSTM trained using 50% of IHM data.

Table 4: Recognition results (%WER) obtained by the sMBR-
trained DNN on the development and final test set, when using
different amount of AMI-IHM data and language model.

ASR model: sMBR trained DNN Test data
Data Aug Train LM ST12 dev ST2 test

IHM20 DEV LM1 12.28 9.08
IHM50 DEV LM1 12.00 9.50
IHM20 FINAL LM2 - 10.56
IHM50 FINAL LM2 - 9.28

4. Rule-based Text Processing
4.1. Baseline System

The baseline text processing system, provided by the organisers
of the challenge, is a rule-based system based on a reference
grammar. This grammar includes a set of possible responses
for each prompt. If an ASR transcription of a given utterance
was in the response list, then this utterance would be labelled as
“accept”, otherwise, it would be labelled as “reject”.

This grammar is generated following a few basic templates
and some updating methods [14]. The baseline reference gram-
mar from 2017 ST challenge, which was provided online, was
expanded using both the ST1 and ST2 data. The updated gram-
mar contains 557 prompt units and 63469 responses in total.

4.2. Developed Systems

4.2.1. Post-processing the ASR Output

As the CALL-SLT tool was designed to practice English con-
versation, it seems reasonable to disregard some hesitation, rep-
etitions and modification of the spoken responses. As such, the
ASR output was post-processed as described below.

Formulaic expressions: Words like “yes”, “hello”, “hi”,
“sorry” often occur in the beginning of the sentences. These
words were removed because they are not useful to make judg-
ments neither on grammar nor meaning.

Interjections: Some hesitation words (such as “um”, ‘ah”,
“hah”) may appear anywhere within the sentences. These words
were removed.

Repetitions: There are different kinds of repetitions ap-
pearing in the sentences which are caused by hesitations of per-
son speaking. Those repetitions could be words or phrases, e.g.,
“I have three three tickets”, “No I don’t have a do not have a
reservation”. Duplicated words or phrases were deleted.

Half-words: Another case we processed is false-start. Per-
sons may be uncertain about their answer, so they may not give
the correct response for the first time, but we should also accept

it if they make it correct for the second time. Half words, like
“gal” in “I want tickets for the gal gallery”, “a” in “I want a an
orange juice”, “post” in “I would like to pay by post postcard”
were removed from the sentences.

4.2.2. Expanding Reference Grammar

We found that the set of responses for some prompts was not
sufficiently well covered in the baseline text processing gram-
mar. Thus, we employed the same procedure which we used in
the 2017 ST challenge to expand the baseline reference gram-
mar. This is described in detail in [6].

4.3. Fusing Multiple Text Processing Results

In developing our ASR systems, we have trained multiple
acoustic models and we observed that the performance of mod-
els varies on different test sets. As such, we explored fusion of
outputs obtained from multiple systems including DNN-HMM
models with 20% or 50% of AMI-IHM, sequence training mod-
els and LSTM models each with 20% or 50% of AMI-IHM data.
We employed fusion based on linear logistic regression using
the FoCal toolkit [15], with further details on this given in [6].

5. Text Processing using Machine Learning
The rule-based text processing system may not be able to ac-
commodate well the variability of spoken language and it pro-
vides only a binary decision about the ASR output transcrip-
tion. To overcome these shortcomings, we explored the use
of machine learning techniques for text processing. We took
the approach of first computing a similarity measure between
ASR output and the responses in the reference grammar and
then building a two-class (“accept” and “reject”) classifier.

A number of methods have been proposed to calculate a
similarity between sentences, e.g., [16]. We employed a method
that first converts the words in a sentence into a vector represen-
tation (referred to as ‘word2vec’) and then calculates a distance
between two sentences based on these word vectors. As our
training data is too small to train a word2vec model, we used
Google’s pre-trained model [17]. This model contains word
vectors for a vocabulary of 3 million words and phrases which
are trained on approximately 100 billion words from Google
News dataset. The word vector dimension is 300. We then em-
ployed the Word Mover’s Distance (WMD) [18] algorithm to
calculate a sentence-level distance between the ASR output and
each correct response from the reference grammar for the given
prompt. The WMD algorithm finds the minimum distance that
the word vectors of one document need to “travel” to reach the
word vectors of another document. This was performed using
the gensim software package [19].

The distances from N best matching responses were used
to construct a feature vector that characterises the ASR output.
The feature vector was filled with the average distance in a case
the number of possible responses in the grammar was lower
than N . We also explored transforming this N -dimensional
sentence similarity feature vector to a lower-dimensional rep-
resentation using the Principal Component Analysis.

We employed several different classifiers to obtain the deci-
sion about an ASR output transcription based on the sentence-
level N -dimensional vector. These include: linear discriminant
analysis (LDA), logistic regression, support vector machine
(SVM), and neural network (NN). In the NN-based text pro-
cessing, a network with one hidden layer with 16 neurons, tanh
as the activation function and the limited-memory Broyden-
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Fletcher-Goldfarb-Shanno (L-BFGS) training algorithm [20],
which is more numerically stable than stochastic gradient de-
scent (SGD), were used.

6. Experimental Results and Discussion
6.1. Scoring Metrics

The sentences are annotated by native speakers according to lin-
guistic correctness and meaning. Comparing the system’s judg-
ments with the human language and meaning annotations, the
result for each response falls into one of the following cate-
gories: i) Correct Accept (CA) – sentence that is labelled as
correct both in language and meaning is accepted by the sys-
tem; ii) False Reject (FR) – sentence that is correct linguistically
and semantically is rejected; iii) Correct Reject (CR) – sentence
that is incorrect either in language or in meaning is rejected; iv)
False Accept (FA) – an incorrect sentence is accepted. The FAs
are split into “Plain FAs” (PFAs) and “Gross FAs” (GFAs), cor-
responding to an FA of a response that is incorrect in language
but has correct meaning and that is incorrect in both linguistic
and semantic sense, respectively. In calculating the overall FA,
the GFA are given k times heavier weight than PFA. The FA is
calculated as FA = PFA+ k ×GFA, with k = 3.

The challenge used originally the following metrics: F -
measure, scoring accuracy (SA), and differential response (D)
score. The F -measure is defined as F = 2PR

(P+R)
, where P and

R denotes the precision and recall, respectively, being defined
as P = CA

(CA+FA)
and R = CA

(CA+FR)
. The SA is defined as

SA = (CA+CR)
(CA+CR+FA+FR)

. The D-score is defined as the ratio
of the rejection rate on the incorrect responses to the rejection
rate on the correct responses – this can be expressed as D =
CR(FR+CA)
FR(CR+FA)

. After the challenge deadline, Da and Dfull met-
rics were added. The Da is defined similarly as D but with con-
cern on acceptance rate, i.e., Da = CA(CR+FA)

FA(FR+CA)
. The Dfull is

the geometric average of D and Da, i.e., Dfull =
√
DDa.

6.2. Results of Official Submissions

This section presents results on ST-TST data obtained by the
three systems we submitted by the deadline of the challenge.
All these systems employed the expanded rule-based text pro-
cessing as described in section 4.

Submission 1 (system DDD on the official 2018 SLaTE
CALL Shared Task results table [21]) consisted of our best sin-
gle ASR system – sequence training model with 50% of IHM
data. This submission achieved the F -measure of 0.915, D-
score of 10.714, and Dfull score of 5.778.

Submission 2 (EEE) was the result obtained by the final
DNN-HMM model trained with 50% of IHM data. This sub-
mission achieved the F -measure of 0.904, D-score of 8.804,
and Dfull score of 4.958.

Submission 3 (FFF) was the result obtained by fusing the
outputs of six separate systems using linear logistic regression.
The individual systems were six variants of the ASR including
DNN-HMM, sequence training model and LSTM model each
with 20% or 50% of IHM data. This submission achieved the
F -measure of 0.914, D of 10.764, and Dfull score of 5.691.

6.3. Results using ML-based Text Processing System

Results obtained using different classifiers in our ML-based text
processing system are presented in Table 5. The presented re-
sults are with N set to 10 (but they did not vary largely for

Table 5: Results obtained by machine-learning text processing
systems employing different classifiers (N was set to 10).

Classifier Evaluation measure
F -measure D Dfull

LDA 0.88 9.767 4.136
logReg (PCA) 0.884 10.263 4.281
SVM (PCA) 0.891 10.939 4.616
NN 0.928 12.716 7.101

different values of N ). It can be seen that the NN-based sys-
tem performed better than other classifiers. The achieved per-
formance is considerably better in all evaluation measures (F -
measure, D and Dfull score) than our submitted systems using
the rule-based text processing.

We have also explored the effect of varying the threshold
for making the final judgement decision. This was 0.5 in all
previous experiments. Results, as a function of the threshold
value, obtained using the NN-based TP system are depicted in
Figure 1. It can be seen that a higher D-score (12.900) can be
achieved when the threshold is set to 0.250, while the Dfull

measure (5.340) is lower than 7.101. Besides the system is not
stable when the threshold is around 0.25.
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Figure 1: Results in terms of various evaluation measures for
the NN-based TP system when varying the decision threshold.

7. Conclusions
This paper described the University of Birmingham’s submis-
sions to the 2018 CALL Shared Task challenge. Our systems
comprised of an ASR and text processing (TP) component. Our
initial focus was on ASR. We extended the DNN-HMM sys-
tem which achieved the best performance in 2017 CALL Shared
Task challenge by using LSTM and sequence training. Our best
developed ASR system, developed with Kaldi using the AMI
and Shared Task corpora, achieved WER of 12.00% and 9.89%
on the ST-DEV and ST-TST, respectively. Our best submis-
sion to the challenge, employing an expanded version of the
rule-based TP, obtained the F -measure of 0.914, D-score of
10.764 and Dfull score of 5.691. After the challenge deadline,
we developed a machine-learning (ML) -based TP. This used
word2vec representation and Word Mover’s Distance to obtain
a similarity measure to reference grammar responses. In our fu-
ture work, we plan to incorporate ‘doc2vec’ similarity measure
instead of using ‘word2doc’ representation and use directly the
Dfull measure as the optimisation criteria in ML-based TP.
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