
Impact of Aliasing on Deep CNN-Based End-to-End Acoustic Models

Yuan Gong, Christian Poellabauer

Department of Computer Science and Engineering
University of Notre Dame, IN 46556, USA

ygong1@nd.edu, cpoellab@nd.edu

Abstract
A recent trend in audio and speech processing is to learn tar-
get labels directly from raw waveforms rather than hand-crafted
acoustic features. Previous work has shown that deep convo-
lutional neural networks (CNNs) as front-end can learn effec-
tive representations from the raw waveform. However, due to
the large dimension of raw audio waveforms, pooling layers are
usually used aggressively between temporal convolutional lay-
ers. In essence, these pooling layers perform operations that are
similar to signal downsampling, which may lead to temporal
aliasing according to the Nyquist-Shannon sampling theorem.
This paper explores, using a series of experiments, if and how
this aliasing effect impacts modern deep CNN-based models.
Index Terms: aliasing, CNNs, end-to-end learning

1. Introduction
Conventional audio and speech analysis systems are typically
built using a pipeline structure, where the first step is to extract
various low dimensional hand-crafted acoustic features, e.g.,
Mel frequency scale cepstral coefficients (MFCC) or features
extracted using linear predictive coding (LPC) and perceptual
linear prediction (PLP) [1]. A problem with hand-crafted fea-
tures is that it is not possible to retain all useful information with
a limited set of features and that these features are not always
best for the classification objective at hand. To overcome these
limitations, several prior efforts began to abandon handcrafted
features and instead feed raw magnitude spectrogram features
directly into the deep convolutional neural networks (CNNs) or
deep recurrent neural networks (RNNs) [2, 3, 4, 5]. Further-
more, another recent trend in audio and speech processing is the
learning directly from raw waveforms, which provides a more
thorough end-to-end process by completely abandoning the fea-
ture extraction step. These networks typically consist of one or
more temporal convolutional blocks (i.e., a 1-D temporal con-
volutional layer followed by a nonlinear activation function and
a pooling layer) as the front-end, followed by decision-making
layers, e.g., RNNs or fully connected layers. The parameters
of these convolutional layers are then learned jointly with the
rest of the network using optimization algorithms. Studies have
shown that such 1-D temporal convolutional blocks are capable
of approximating standard filterbanks, such as a gammatone fil-
terbank [6, 7, 8]. For example, in [9, 10], the authors use one
temporal convolutional layer and then conduct a global aver-
aging pooling throughout each window of 25-35ms, and then
feed the outputs into RNNs. Other projects stack multiple time-
domain convolutional blocks in sequence [6, 11, 12, 13] to learn
the representation of the raw waveform. In [14, 15], the authors
explore the use of very deep network architectures with 8 and
34 temporal convolutional blocks, respectively.

Using multiple convolutional blocks to learn a representa-
tion seems natural, because such architectures have been used

successfully in computer vision tasks [16, 17]. For computa-
tional efficiency, deep CNNs usually use fewer filters in earlier
convolutional layers [14, 15]. From the perspective of signal
processing, this can be viewed as a multi-level filtering oper-
ation: the first temporal convolutional layer performs primary
filtering of the input waveform; the output signal is then fed
into a pooling layer followed by another convolutional layer,
which then performs additional filtering. However, perform-
ing temporal pooling (i.e., pooling over time) is similar to a
downsampling operation in signal processing. According to the
Nyquist–Shannon sampling theorem, downsampling will lead
to the aliasing effect, where the frequency components that are
more than half of the new sampling rate will be mistakenly sam-
pled as low-frequency components and mixed into the real low-
frequency components. Therefore, the convolutional layers af-
ter the pooling layer actually receive an aliased signal from the
preceding network where aliased high-frequency components
and the actual low-frequency components were mixed together
and have become indistinguishable. This raises the questions
of whether a succeeding convolutional layer will be able to per-
form effective filtering, whether this aliasing effect will impact
the performance of deep learning models, and if so, what the
extent of this impact will be. In this work, we provide a focused
exploration and discussion of these questions, which, to the best
of our knowledge, have not been extensively studied before.

2. The Impact of Aliasing on Deep CNNs

In order to facilitate analysis and discussion, we use a simple
network architecture with two temporal convolutional blocks
for our experiments. As shown in Figure 1, first, we take a
small window of the raw waveform (consisting of M samples)
and convolve the raw waveform with a set of N1 filters. We
use the same padding to ensure that the output from the con-
volution is M × N1. We then apply an activation function to
the output signal and perform a pooling of size K. The output
from the pooling layer will be dM

K
e ×N1. Finally, we pool the

output in time over the entire window, to produce 1 × N2 out-
puts. We then shift the window and repeat this process. For an
input signal with T ×M points, the output will be a T × N2

“time-frequency” representation. We then pass it to the suc-
ceeding layers. We refer to layers before this time-frequency
representation as “front-end layers” and layers afterwards as
“back-end layers”. The back-end layers include multiple 2-D
time-frequency convolutional blocks and two fully connected
layers. Each 2-D convolutional block consists of a convolu-
tional layer with 32 filters, each of size [2,2], and a max pooling
layer with pooling size [2,2]. We stack three such blocks in ex-
periments 1, 2, and 4; and 2 blocks in experiment 3, according
to the input length. The dense layers have 128 and 64 units, re-
spectively. The design of the back-end architecture is similar to
the one presented in [3]. In our experiments, this back-end ar-
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Figure 1: The network architecture used in our experiments.

chitecture performs slightly better than stacking LSTM layers.
Since our focus is on the impact of the aliasing effect caused

by the temporal pooling layer between adjacent temporal convo-
lutional layers, we want to primarily investigate how the alias-
ing effect depends on the pooling type, the size K of the pooling
layer between the temporal convolutional layers, and the num-
ber of filters in the convolutional layer before the pooling layer.
Since global average pooling can be considered as an estimate
of the energy of the output temporal signal throughout the en-
tire window, which discards temporal details, we do not study
the aliasing effect in the back-end layers. The following param-
eters are kept identical across all experiments: the input signal
is sampled at 16kHz, the window size M = 640 (which cor-
responds to 40ms), the convolutional filter size is 256, and the
number of filters of the second convolutional layer N2 = 16.
Further, the learning rate is selected using a grid search in [1e-5,
5e-5, 1e-4, 5e-4, 1e-3, 5e-3] and the network is optimized using
an Adam optimizer [18] with a Xavier uniform initializer [19].
The training set and test set are independent and the model is
selected according to the performance on a small independent
validation set, which is reserved from the training set.

2.1. The Aliasing Effect

According to the Nyquist-Shannon sampling theorem, signal
downsampling leads to the aliasing effect, i.e., the frequency
f that is over half of the new sampling rate fs will be mistak-
enly sampled as low aliased frequency fa:

fa =
∣∣∣f − (k+1)fs

2

∣∣∣ where kfs
2
≤ f ≤ (k+2)fs

2

However, in modern neural networks, direct downsampling
is rarely used. Instead, the output temporal signal of preceding
convolutional layers is first applied with an activation function
and then compressed using max pooling or average pooling.
The practical compression operation that combines the activa-
tion function and max/average pooling is not the same as a sin-
gle downsampling operation. Therefore, the first question we
explore is: will such practical compression operations also
lead to the aliasing effect? That is, are signals with mirrored
frequencies distinguishable after applying the activation func-
tion and max/average pooling? In this section, we discuss a
typical case where the original sampling rate is 16kHz and the
pooling size is 2, i.e., the folding frequency is 4kHz. We further
refer to the frequencies that are symmetrical around the folding
frequency as mirrored frequencies and the corresponding sig-
nals as mirrored signal pairs. We first consider the setting cur-
rently most deep neural network (DNN) models use: the ReLU
activation function [20] and max pooling. From the perspective
of signal processing, ReLU is equivalent to a half-wave rectifier,
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Figure 2: Comparison of the spectrograms of two mirrored sig-
nals of same magnitude after ReLU and max pooling.
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Figure 3: The CCCs of signals with different frequencies and
their mirrored signals after ReLU and pooling.

which will add harmonic frequency components to the output
signal. Further, we empirically found that after max pooling,
the mirrored signal pair has main components and harmonic
components at the same frequency points, but the magnitudes
are different (shown in Figure 2). If we measure the similarity
of mirrored signal pairs using the cross-correlation coefficient
(CCC) (shown in Figure 3), we can observe the phenomenon
that the closer the mirrored signal pairs are to the folding fre-
quency, the higher the similarity they have. The magnitude ra-
tio and phase difference of harmonic frequency components and
the main frequency component shows a pattern that can be used
to distinguish mirrored signal pairs. However, the magnitude
of harmonic frequency components is small and practical au-
dio signals do not consist of only a single frequency compo-
nent, therefore, the harmonic frequency components are easy
to be mixed and submerged in the background broad spectrum.
Thus, the mirrored signal pairs are hard to distinguish after a
compression of ReLU and max pooling when they are close to
the folding frequency. A theoretical analysis of other non-linear
activation functions and pooling methods is difficult. Therefore,
we execute the following experiment for validation:

Experiment 1: Given a label set of frequency points C =
{f1, f2, ..., fn}, we synthesize a set of 1-second signals S, each
signal composed of one main frequency component f ∈ C with
a magnitude randomly selected from [0.1,1.0] and 128 noise
frequency components at random frequency points with magni-
tudes randomly selected from [0, 0.1] in the frequency domain.
The DNNs are asked to recognize the frequency of the main
components, i.e., to find a mapping S 7→ C. For each f , we
synthesize 1000 signal samples for training and 32 signal sam-
ples for testing.

In this experiment, we want to see that if the mirrored sig-
nal pairs output from the preceding convolutional layer can be
distinguished from the rest of the network after the activation
function and pooling layer. Hence, we input the samples right
after the first convolutional layer and before the activation func-
tion (the dashed arrow in Figure 1). The sample rate of the
synthetic signals is 16kHz. We then perform experiments with
a set S1 (corresponding to C1, which consists of frequencies
ranging from 3.5kHz to 4.5kHz with an interval of 0.1kHz ex-
cept for the folding frequency 4kHz (10 classes)), and a set S2

(corresponding to C2, which consists of frequencies ranging
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Table 1: The classification accuracy (%) for S1 (first number)
and S2 (shown in parentheses) in experiment 1.

ReLU Linear Sigmoid
Downsampling 45.4 (91.0) 54.5 (93.4) 55.3 (97.7)

Average Pooling 49.4 (91.4) 53.1 (94.8) 58.2 (93.7)
Max Pooling 47.2 (93.8) 54.8 (93.7) 69.0 (92.6)

Figure 4: The confusion matrix of experiment 1 for S1 (left) and
S2 (right) when using ReLU and max pooling.

from 3.5Hz to 4.0kHz with an interval of 0.1kHz and 4.05kHz
to 4.45kHz with an interval of 0.1kHz (10 classes)). S1 includes
five pairs of mirrored signals after 2-pooling, while S2 includes
no mirrored signals. We perform the tests with different activa-
tion functions and pooling layers in the first convolutional block
(ReLU and max pooling are used in other layers).

The results are shown in Table 1. The test for S2 shows
a classification accuracy of over 91% (which means that the
DNNs are capable of this task), while the test for S1 achieves
only around 50%. Since the result is similar for all activation
and pooling layer settings, except that the Sigmoid function and
max pooling displays better accuracy, and considering that the
Sigmoid function is seldomly used in modern DNNs due to the
vanishing gradient problem, we use the commonly-used ReLU
and max pooling setting as representative for our discussions in
the rest of this paper. The confusion matrix (shown in Figure 4)
shows that the most classification errors happen in mirrored sig-
nal pairs and very few errors are across different mirror pairs.
This shows that the DNNs cannot distinguish mirrored signal
pairs, but have no problem in classifying non-mirrored signals
in S1. Nevertheless, the above experiments were performed
near the folding frequency, which according to Figure 3 has
a high similarity. Next, we demonstrate that mirrored signal
pairs that are farther from the folding frequency are also distin-
guishable by the DNNs. The next experiment explores the rela-
tionship of the DNNs’ classification accuracy with regard to the
CCC of the mirrored signals. The results are shown in Figure 5,
where we can see that with decreasing CCC, the classification
accuracy improves. More specifically for this example, in the
range of 3.3kHz to 4.7kHz, the classification accuracy of DNNs
is less than 70% (CCC≈0.97), while outside of this range, the
mirrored signals begin to be distinguishable by the DNNs (we
call this the aliasing region). Using CCC=0.97 as a threshold
for aliasing, we calculate the aliasing region for other pooling
sizes (shown in Figure 6). The aliasing regions do not overlap,
even when the pooling size K = 8, which means that there ex-
ists at most one mirrored frequency for a given frequency, while
simple downsampling will lead to K − 1 mirrored frequencies.
In summary, the operation that combines the activation func-
tion and pooling layer will also lead to the aliasing effect, but
will only impact a smaller frequency range near the folding fre-
quency, compared to the single downsampling operation.
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Figure 5: Classification accuracy with regard to the CCC of
mirrored signal pairs when using ReLU and max pooling.
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Figure 6: The aliasing regions (rectangles) expand with increas-
ing pooling size K (the numbers in the rectangles).
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Figure 7: Examples of the anti-aliasing filterbanks (marked with√
). Note that although f2 and f3 are aliased in one filter of

filterbank 3, they are seperated out in another filter, therefore
the following operation will be able to distinguish them through
further filtering and subtraction.

2.2. The Anti-Aliasing Filterbank

Since the mirrored signal components in the output signal of the
preceding convolutional layer cannot be distinguished by the
succeeding layers after pooling, in order to avoid aliasing, the
preceding layer needs to conduct effective anti-aliasing filtering,
i.e., making the mirrored frequency components of the signal
separable and then feed them to the succeeding layer. When the
pooling size is two, theoretically, the preceding convolutional
layer only needs two filters to avoid aliasing (e.g., a low-pass
filter that stops at the folding frequency and a high-pass filter
that starts at the folding frequency). We illustrate this in Fig-
ure 7. However, do DNNs really learn such an anti-aliasing
filterbank? We perform an experiment to explore this question.

Experiment 2: We synthesize a set of signals in a similar
manner as in experiment 1, except that we also add frequency
components at all frequency points in the label set C, while the
frequency component at the main (label) frequency point has
the largest magnitude. The model is asked to recognize the fre-
quency of the main frequency component. We synthesize the
sets S

′
1 and S

′
2 corresponding to the same label sets C1 and

C2 as in experiment 1. But different from experiment 1, the
signal is input to the front of the network. To accomplish this
task, the model essentially needs to filter out all f ∈ C before
the global average pooling layer and find the components with
the largest magnitude. Since each signal sample in S

′
1 contains

components at the mirrored frequency point of the main com-
ponent, the DNNs further need to learn anti-aliasing filterbanks
in the first convolutional layer. We repeat the experiment with
different numbers of filters in the first convolutional layer N1.

As shown in Table 2, we find that the DNNs perform well
on S

′
2, even when N1 = 1. In contrast, for S

′
1, which includes
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Table 2: The classification accuracy (%) for S
′
1 (first number)

and S
′
2 (shown in parentheses) in experiment 2.

# Filters of the First Convolutional Layer N1 No
Pooling1 2 4 8

47.9 (91.2) 59.4 (91.1) 63.0 (93.3) 77.1 (88.5) 93.8 (92.9)
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Figure 8: Learned filter in the S
′
1 test when N1 = 2. Bold lines

represent frequency points ∈ C.

mirrored signal components, even when the first convolutional
layer has more than two filters, the classification accuracy is still
substantially worse than that for S

′
2. The frequency response of

the filters of the first layer shows that they do not separate out
the mirrored signal. For example, as shown in Figure 8, when
N1 = 2, filter 1 responds to all frequencies in C1, except for
4.4kHz, while filter 2 only responds to 4.4kHz and 4.5kHz. In
this case, the signal components between 3.7kHz and 4.3kHz
are aliased by filter 1 and not passed by filter 2, and are there-
fore difficult to be distinguishable in the successive filtering and
operations. With an increasing number of filters in the first con-
volutional layer, the performance improves, but is still unsatis-
factory. We perform another experiment for comparison, i.e.,
we eliminate the first pooling layer (therefore no aliasing) and
obtain a classification accuracy of 93.8% on S

′
1 when N1 = 1,

which further proves that it is the aliasing that leads to the per-
formance drop. In summary, although in theory the preceding
convolutional layer can use anti-aliasing filters to eliminate the
impact of aliasing, in practice it does not do so.

2.3. Impacts on Practical Tasks

In the previous section, we explored the impact of aliasing on a
designed task, i.e., to recognize a simple frequency pattern from
the waveform. In this task, the magnitude of the main frequency
components is the indispensable clue for classification. We have
seen that aliasing can greatly hurt the performance of DNNs by
blurring this indispensable clue. Will the aliasing effect also
impact the performance of practical tasks? Based on the ear-
lier discussion, we believe that it depends on the task, because
practical acoustic recognition tasks usually require recognition
of a more complex time-frequency pattern, but this also means
that more clues are given for inference. Assume that the target
pattern is composed of several discriminative frequency com-
ponents, then even if some are affected by aliasing, a prediction
can still be made based on others. Further, the discriminative
frequency components might not fall into the aliasing region.
We perform the following experiment to investigate the impact
on practical audio recognition tasks:

Experiments 3 & 4: We perform a phone recognition test
on a subset of the TIMIT database, which includes 5 phones
(/sh/, /ch/, /jh/, /z/, and /s/) with frequency components around
4kHz and evaluate on the complete test set. We further perform
a 4-class speech emotion recognition (happy+excited, sad, an-
gry, neutral) test on the IEMOCAP [21] database and evaluate

Table 3: Results for real tasks (UAR%).

TIMIT # Filters N1

Pooling Size 2 4 8 16
No Pooling 73.1 76.0 75.7 75.5

2 70.0 74.4 74.7 75.4
4 70.0 72.6 74.3 73.5
8 68.6 72.2 73.6 73.9

IEMOCAP
No Pooling 56.1 55.9 55.4 55.4

2 54.7 54.7 54.7 55.0
4 55.5 55.3 55.4 54.8
8 55.5 55.3 55.7 55.4

/sh/
/ch/
/jh/
/z/
/s/

0Hz                8000HzFrequency

Figure 9: Heatmap of frame-level spectra of the TIMIT subset.

using a five-fold leaving-one-session-out strategy, i.e., using a
similar experimental setting as in [4]. The classes are not bal-
anced in both tests. Hence, we use random oversampling for
training and use unweighted average recall (UAR) as the test
metric. The input is padded or cut to 0.2s and 6s in the two
experiments, respectively. We repeat the experiment with dif-
ferent pooling sizes K and numbers of filters in the first convo-
lutional layer N1. As shown in Table 3, for the TIMIT test, we
find that no pooling and smaller pooling sizes lead to noticeable
better performance and that the performance gap narrows when
the first convolutional layer has a sufficient number of filters.
Both phenomena match our analysis and results in experiment
3, demonstrating that the compression of pooling does affect the
performance. Considering that most frequency components in
the selected subset fall around the aliasing region (shown in Fig-
ure 9), this task is indeed easily affected by the aliasing effect.
In contrast, the performance difference in the emotion recogni-
tion task is minor, indicating that not all real tasks will be no-
ticeably affected by the pooling compression. It is worth men-
tioning that although eliminating the pooling can avoid aliasing
(as shown in experiment 2), it might also hurt the performance,
since the pooling layer can increase the robustness of the DNNs
to slight temporal distortions in the input signal [11], hence the
result might underestimate the impact of the aliasing effect.

3. Conclusions
This paper explores the impact of aliasing led by pooling in tem-
poral CNNs. We show that combining the activation function
and max/average pooling leads to aliasing, but with a smaller
impact range in the frequency domain. This leads to a perfor-
mance drop in designed and real audio recognition tasks, since
the preceding convolutional layers do not effectively learn fil-
terbanks able to separate the mirrored signal components. By
eliminating the pooling layer, the model can eliminate the alias-
ing problem and obtain better performance. But this is not a
practical solution, since it will greatly increase the memory and
computational overhead, preventing deeper networks. Possible
future research directions are the design of new activation func-
tions and pooling techniques that can make mirrored signals
distinguishable and the design of initializers, regularizers, and
training schemes that help DNNs to learn anti-aliasing filters.
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