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Abstract
Learning an ASR acoustic model directly from raw waveforms
using CNNs has proved to be effective, where convolutional
layers with learnable filters are able to automatically extract
useful features. However, these filters, with independent param-
eters, can be highly redundant resulting in inefficient systems.
In this paper, we propose a novel method to generate CNN filter
parameters by first sampling from a low-dimensional parameter
space and then using a trainable scalar vector to perform a lin-
ear combination. This filter sampling and combination method
(denoted as FSC) not only naturally enforces parameter shar-
ing in the low-dimensional sampling space, but also adds to the
learning capacity of filters. The FSC-CNN model has a sig-
nificantly smaller number of parameters and is more efficient
compared to conventional CNN models, which makes it feasi-
ble for small-footprint ASR. Experimental results on the WSJ
LVCSR task show that FSC-CNNs are able to achieve a WER of
3.67 with a standard decoder set-up with only 1.19M nonlinear-
layer parameters (better than a strong baseline CNN model with
3.2x more parameters). It also outperforms a CNN model with
a similar number of parameters by a relative improvement of
10.26%.

.
Index Terms: speech recognition, small-footprint, acoustic
modeling, raw audio, filter sampling and combination, CNNs

1. Introduction
Recently, a great deal of attention has been paid to training ASR
acoustic models directly from raw waveforms. Several types of
neural-network architecture have been proposed. In [1, 2], feed-
forward DNNs were adopted to learn features from raw wave-
forms. The authors in [3] proposed a network-in-network archi-
tecture that uses CNN filters to extract features from the signals
and showed significant improvement over MFCCs. Similarly,
shallow CNN models were used in [4, 5] and they are robust to
noise. In [6], a combination of convolutional layers and long
short-term memory (LSTM) layers was proposed to show the
effectiveness of raw-waveform modeling. Moreover, a complex
linear projection (CLP) layer with LSTM layers was proposed
in [7], which achieves superior performance compared to filter-
bank features.

While the majority of those systems are focused on large-
scale neural network models, few studies have focused on de-
signing a compact model for small-footprint ASR applications,
which can directly model the raw-waveform input.

Small-footprint ASR is very important in resource-
constrained scenarios which require a smaller size of acous-
tic models while achieving high recognition accuracy. There
have been several studies on small-footprint ASR. In [8, 9],

the authors use matrix factorization methods on fully-connected
layers to reduce parameters. In [10, 11], techniques based on
teacher-student learning have been applied to distill knowledge
from large models to small models. [12] investigated the use of
low rank displacement of structured matrices for small-footprint
networks. However, only a few studies have focused on raw-
waveform modeling. The authors in [13] proposed a unified
highway network (HW) with a time-delayed bottleneck layer in
the middle to model the raw waveform after computing the dis-
crete Fourier transform. The proposed thinner and deeper HW
networks with complex DFT features show significant improve-
ment over filterbank features and have smaller footprint. The
effect of HW networks for small-footprint ASR is also studied
in [14].

In this paper, we first propose a deep 1-D CNN model to ex-
tract features directly from raw waveforms. Since learned filters
with independent parameters can be redundant, we then propose
a novel method to generate CNN filters with a limited num-
ber parameters in two steps: first sample the filter parameters
from a low-dimensional space; then use a set of trainable scalar
vectors to perform a linear combination of the sampled filters.
The proposed filter sampling and combination CNN model has
a significantly smaller number of parameters compared with a
standard CNN model and can still extract useful features from
raw waveforms with no loss in accuracy.

2. CNN-based acoustic modeling using raw
waveforms

In this section, we introduce our baseline system, which uses a
CNN-based neural network architecture and raw waveforms as
input for acoustic modeling.

The input features to the neural network are long duration
segments (110ms or 1760 samples) of raw waveform signals.
The raw waveforms are mean and variance normalized at the
speaker level. For the neural network architecture, we propose
a deep 1-D CNN model to extract features from raw waveforms
as shown in Table 1. This CNN structure has 7 convolutional
layers and 2 fully-connected layers. The first three layers have
larger filter sizes in order to capture larger reception fields, such
that more useful low-level features can be extracted from raw
waveforms. The last four convolutional layers have a smaller
filter size but a larger number of filters, which can efficiently
extract higher-level features. The output of each convolutional
layer is fed into a max-pooling layer with stride equal to two, in
order to reduce the dimension of the feature maps and extract
invariant features. In the end, two fully-connected layers are
stacked, which can transform the extracted features into a space
for discriminative classification. A fully-connected layer can
be also treated as a 1-D CNN layer which has larger-size filters
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Table 1: Proposed 1-D CNN structure (the last column shows
the number of parameters for each layer).

Layer Filter size #filters #para

conv1 32 32 1K
conv2 32 64 65K
conv3 16 128 131K
conv4 8 128 131K
conv5 8 256 262K
conv6 8 512 1M
conv7 4 512 1M
fc1 2048 512 1M
fc2 512 512 262K

Figure 1: Filters learned from each conv layer. Each row
represents a layer and 6 different filters from that layer are

shown.

with depths equal to one.
In this paper, since we are aiming at designing compact and

efficient neural network models for ASR, the parameters of the
baseline CNN model are highly optimized and well designed.
The total number of nonlinear-layer parameters of the baseline
CNN is around 3.84M.

3. Filter sampling and combination CNN
In the following subsections, we will first show the learned fil-
ters from raw audio features and their redundancy using the
proposed CNN model defined in the previous section, and then
we will introduce our proposed filter sampling and combination
method in detail.

Figure 2: Widthwise filter sampling in space Φ.

Figure 3: Depthwise filter sampling in space Φ.

3.1. Filters learned from raw audio

The proposed 1-D CNN model uses independent filters to learn
representations from the input. In order to investigate the
relationship between the filters, we plot the filters that are
learned from convolutional layers in Figure 1. We select 6 one-
dimensional filters from each layer. From the figure, we can
observe that the learned filters in the same layer are redundant.
Many of the filters have similar shapes but different ranges. This
motivates us to use fewer parameters to represent the filters and
still keep their learning ability. Therefore, in this paper, we pro-
pose a novel filter generation method, which first samples the
filter parameters from a low dimensional space of parameters,
and then uses a set of trainable scaler vectors to perform a lin-
ear combination. By doing filter sampling and combination, we
are able to get various filters which share weights in a hidden
low-dimensional space. The technique can also alleviate over-
fitting problems by introducing a smoother loss function, which
is modeled with fewer parameters.

3.2. Filter sampling

We introduced the idea of weight sampling in [15], which effi-
ciently reuses the weights among filters. In this paper, we apply
the filter sampling step in a similar way.

For a given convolutional layer, the width of a filter is de-
fined as the filter size of each 1-D filter, and the depth of a filter
equals the number of feature maps outputted from the previ-
ous layer. Let L denote the filter width and M denote the filter
depth.

For each convolutional layer, all filters are sampled from a
low dimensional filter-sampling space Φ as illustrated in Figure
2. Φ is a two-dimensional space with width Lφ and depth Mφ.

To start, we set the depth of the sampling spaceMφ equal to
the depth of filter M and only do the sampling along the width.
We then use a sliding window with the same size L and depth
M as the filters to do the sampling in Φ, as shown in Figure
2. The stride (or the skipping step) of the sliding window is
denoted as S. The smaller S is, the more parameter sharing
among filters. Suppose that we sample N filters from Φ, then
the equation between the width of Φ and the size and stride of
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the window is:

Lφ = NS + L− S. (1)

The filter sampling method ensures that each generated fil-
ter shares the weights with adjacent filters, such that the number
of independent parameters is reduced significantly. The com-
pression ratio for widthwise sampling is LN

Lφ
≈ L

S
, given that

N is much larger than L.
Besides the widthwise sampling, we can also perform

depthwise sampling by repeating the sampling several times,
as illustrated in Figure 3. We set the depth of sampling space
Mφ to be M

T
, where T denotes the number of times sampling

is repeated (i.e. reusing the same parameters) so that the com-
pression ratio for depthwise sampling is M

Mφ
= T . Note that

both widthwise and depthwise sampling can be applied simul-
taneously to generate filters.

3.3. Filter combination

Directly applying filter sampling can reduce the number of pa-
rameters significantly. However, simply tying the weights be-
tween adjacent filters will limit their learning ability. Therefore,
in order to avoid tying parameters directly between filters, we
introduce a set of trainable scaler vectors αi as in Eq.2, where
i = 1, 2, ..., N and N is number of filters for a given layer.
Each αi consists of M scalers αij , where j = 1, 2, ...,M , and
M is the depth of the filters. Let Fi denote the ith generated fil-
ter from the filter sampling step as in Eq.2, where Fij is a filter
of size L in jth depth of filter Fi . Each αij is multiplied to Fij
to generate a new set of filters F̂i as shown in Eq.2.

αi =




αi1
αi2

...
αiM


 , Fi =




Fi1
Fi2

...
FiM


 , F̂i =




αi1Fi1
αi2Fi2

...
αi2FiM


 (2)

The new filter F̂i can be interpreted as a linear combination
of the original filter Fi, and the linear weights are all trainable
and optimized based on the final loss of the neural network. The
proposed filter combination method ensures that all the gener-
ated filters will now have unique parameters and they still natu-
rally share the weights in the hidden sampling space Φ.

By adding a set of scaler vectors αi, we introduce M ∗ N
extra parameters for each layer. The motivation of adding
αi is to ensure that each generated filter will have different
parameters to model them, and the filters generated from the
filter-sampling step only share the weights with a limited
number of filters. Therefore, it is not necessary to use M ∗ N
independent parameters to represent αi, and instead we can
tie the weights of αi, such that each generated filter has a
unique combination of weights from Φ and scalers from αi .
Similar to the idea of weight sampling, we can tie the weights
of either dimension M or N . If we do the widthwise filter
sampling in the first step, we can tie the weights of αi along
dimension N by a ratio of RN (i.e. weights are repeated
every N

RN
); if depthwise filter sampling is conducted, the

weights of αi can be tied along dimension M by a ratio of
RM . By applying weight tying, we can significantly reduce the
number of parameters needed for the linear combination step.

The above weight sampling and combination method can
be conveniently generalized from convolutional layers to
fully connected layers. As mentioned in Section 2, for a
fully-connected layer, since its input has a single channel,

its weights can be treated as filters with depth one. Those
filters have large filter sizes which equal to the size (vector
dimension) of the input to that layer. Since the depth of the
filters already equals to one, we can only perform widthwise
filter sampling for fully-connected layers.

4. Evaluation setup
We conduct our experiments on 80 hours of speech data using
the Wall Street Journal (WSJ) continuous speech corpus [16].
We use the standard configuration: si284 dataset for training,
dev93 for validation and eval92 for testing. The Word Error
Rates (WER) on eval92 are reported. We compare with filter-
bank and raw waveforms based systems. For filterbank feature
based systems, we use 40-dim Mel-filterbank features normal-
ized on a per-speaker level, which are then spliced by a context
window of 11 frames (i.e. ±5). DNNs and CNNs with various
sizes are compared. For raw waveforms based systems, in order
to make fair comparison, we use 110ms raw waveforms as in-
put, which covers the same context as Mel-filterbank features.
The raw waveforms are also normalized on per-speaker level.
For the raw waveforms baseline, we use the 1-D CNN structure
as introduced in Section 2. The number of tied tri-phone states
is 3362 and all the neural network systems are trained with the
same alignment. No speaker adaptation is performed for any
of the systems. All experiments in this paper are conducted us-
ing the Tensorflow neural network training toolkit [17] with the
Kaldi decoder [18].

All the neural networks are trained using the Adam opti-
mization strategy [19] with cross-entropy criterion. The net-
works are initialized with Gaussian random normal distributed
weights with standard deviation equal to 0.01. The relu activa-
tion function is used for all layers. For each layer, before pass-
ing the tensors to the nonlinearity function, a batch normaliza-
tion layer [20] is applied to normalize the tensors and speed up
the convergence. The shuffling mechanism is applied on each
epoch. All neural networks are trained from scratch. For de-
coding, we use Kaldi WSJ’s default setup, which uses trigram
language modeling and a large dictionary.

5. Experiments and results
5.1. Mel-filterbank features vs. Raw waveforms

In this section, we compare the performance of using Mel-
filterbank features and raw waveforms. For Mel-filterbank fea-
tures, both DNNs and CNNs with various numbers of param-
eters are investigated. We also do a VTLN-based data aug-
mentation technique to increase the data by 5 times for filter-
bank features. For raw waveform features, the proposed 1-D
CNN model is used. Table 2 compares results of different se-
tups. From the first two rows, we can observe that for Mel-
filterbank features, when decreasing the number of parameters
from 17.6M to 3.86M, the performance degrades. Given a sim-
ilar number of parameters as in rows 2, 3 and 5, 2-D CNNs per-
form better than DNNs for Mel-filterbank features. When using
raw waveforms with the proposed 1-D CNN model, the WER
decreases to 3.70, which is 22.6% relatively better than Mel-
filterbank with DNNs and 21.4% relatively better than Mel-
filterbank with CNNs. The proposed 1-D CNN model with-
out any data augmentation also outperforms a 17.6M-parameter
Mel-filterbank-based DNN model with data augmentation by
relatively 8% as shown in the 4th row. The results indicate that
the proposed 1-D CNN model with raw waveform as input is
very efficient for acoustic modeling, and it is able to extract
useful features automatically. Therefore, we will use the 1-D
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CNN as our baseline system for the following subsections.

Table 2: Baseline comparison: different features and nerual
network structures.

Set-up WER #para

1 Mel-fbank+5-layer DNN 2048 4.55 17.6M
2 Mel-fbank+5-layer DNN 930 4.78 3.86M
3 Mel-fbank+2-D CNN 4.71 3.86M

4
Mel-fbank+5-layer DNN 2048

+data augmentation
4.02 17.6M

5 raw waveform+1-D CNN 3.70 3.84M

5.2. Filter sampling

In this section, we first show ASR performance using the pro-
posed CNN models with decreasing number of parameters in
Table 3. We can observe that when the number of parameters
decreases from 3.84M to 1.27M (from row 1-4) by reducing the
number of filters in the convolutional layers or the hidden nodes
in the fully-connected layers, the WERs increase significantly.
This result indicates that the number of filters and hidden nodes
are very important for this CNN model.

Then, we apply the filter sampling method (denoted as FS)
introduced in Section 3.2 to the baseline CNN model. For con-
volutional layers, we apply filter sampling along either width
(denoted as cw in row 5) or depth (denoted as cd in row 6),
respectively. For fully-connected layers, we can only do the
sampling along width (denotes as fw). Both convolutional and
fully-connected layers are compressed with a ratio of 4 (denoted
as cw/4, cd/4 and fw/4), and therefore the total number of pa-
rameters is reduced by a factor of 4, which is 0.96M. From Ta-
ble 3, we can see that the performances of filter sampling CNNs
(FS-CNNs) degrade compared with the baseline CNNs due to
much fewer parameters. However, given similar WERs as in
rows 3 and 5, FS-CNNs have only two thirds of the parameters
of a standard CNN. Filter sampling along width or depth has
comparable performance (compare the last two rows in Table
3).

Table 3: Filter sampling results for raw waveform CNNs. 'c∗'
indicates that the convolutional layers have half the number of
filters in each layer compared with the baseline CNN. 'cw' and
'cd' represent compressing the parameters in the convolution

layers using widthwise and depthwise filter sampling,
respectively. 'fw' represents performing widthwise filter

sampling in the fully connected layers. '/4' means reducing the
number of parameters by a factor of 4.

Set-up WER #para

1 CNN: 7c+f512-512 3.70 3.84M
2 CNN2: 7c+f512-256 3.88 3.71M
3 CNN3: 7c∗+f512-512 4.00 1.41M
4 CNN4: 7c∗+f512-256 4.09 1.27M
5 CNN+FS (cw/4, fw/4) 4.00 0.96M
6 CNN+FS (cd/4, fw/4) 4.04 0.96M

5.3. Filter sampling and combination

From the previous section, we can notice that only using fil-
ter sampling will lead to performance degradation. One of the
possible reasons is that tying weights between filters can limit

their learning ability in extracting features. Therefore, in this
section, we show the results when applying both filter sampling
and combination in Table 4. Rows 4 and 8 show the effect of
using both filter sampling and combination to generate CNN
filters. Clearly, adding a linear combination step significantly
improves the performance of the filter sampling CNNs. When
performing widthwise sampling, FSC-CNNs improve the per-
formance of FS-CNNs by 5.7%; when performing depthwise
sampling, FSC-CNN outperforms FS-CNN by 4.5%. Hence,
the improvement is more significant for widthwise sampling.

As mentioned in Section 3.3, we can significantly reduce
the number of parameters of the linear combination step, by
simply tying the weights of scaler vectors. In Table 4, results
for compressing scaler-vector parameters by factors of 2 and 4
(denoted as /2 and /4) are shown in rows 5, 6, 9 and 10. We
notice that by using less parameters for a linear combination,
the FSC-CNN can achieve even better performance due to less
over-fitting. When performing widthwise filter sampling and
compressing the linear combination weights by a factor of 2,
we achieve a WER of 3.67 with only 1.19M parameters, which
is even better than the strong baseline CNN with x3.2 more pa-
rameters. When this best performing system is compared with
the CNN4 model in 2nd row with a similar number of parame-
ters, the WER decreases by 10.26%. When further reducing the
number of parameters to 1.07M as in row 6, the WER increases
to 3.81, which is only a small degradation.

Table 4: Filter sampling and combination results for raw
waveform CNNs. 'lin-MxN ' means doing linear combination

using MxN different scalers.

Set-up WER #para

1 CNN: 7c+f512-512 3.70 3.84M
2 CNN4: 7c∗+f512-256 4.09 1.27M
3 CNN+FS (cw/4, fw/4) 4.00 0.96M
4 CNN+FSC (cw/4, fw/4, lin-MxN) 3.77 1.41M
5 CNN+FSC (cw/4, fw/4, lin-MxN/2) 3.67 1.19M
6 CNN+FSC (cw/4, fw/4, lin-MxN/4) 3.81 1.07M
7 CNN+FS (cd/4, fw/4) 4.04 0.96M
8 CNN+FSC (cd/4, fw/4, lin-MxN) 3.86 1.41M
9 CNN+FSC (cd/4, fw/4, lin-M/2xN) 3.85 1.19M
10 CNN+FSC (cd/4, fw/4, lin-M/4xN) 3.86 1.07M

6. Discussion
Theoretically, the proposed FSC-CNN can be easily general-
ized to 2D CNN with time-frequency features. However, we
think FSC-CNN is more effective with 1-D CNN and raw-audio
input, since the filter size for 1-D CNN is usually quite large
in order to capture lager reception fields of the raw waveform.
This may result in larger redundancy between the learned fil-
ters. Moreover, the proposed FSC-CNN can be combined with
other model compression techniques, such as weight quantiza-
tion, which can further reduce the number of parameters signif-
icantly with no loss in accuracy.

7. Conclusion
In this paper, we present a compact FSC-CNN model, which
uses a filter sampling and combination method to efficiently
generate filters with a relatively small number of parameters but
with a strong learning capability. When applying FSC-CNN on
WSJ LVCSR task with raw waveforms, it outperforms a strong
baseline CNN with 3.2x fewer parameters.
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