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Abstract
Recurrent neural network (RNN) is conventionally trained in
the supervised mode but used in the free-running mode for in-
ferences on testing samples. The supervised mode takes ground
truth token values as RNN inputs but the free-running mode
can only use self-predicted token values as surrogating inputs.
Such inconsistency inevitably results in poor generalizations of
RNN on out-of-sample data. We propose a moment matching
(MM) training strategy to alleviate such inconsistency by simul-
taneously taking these two distinct modes and their correspond-
ing dynamics into consideration. Our MM-RNN shows signifi-
cant performance improvements over existing approaches when
tested on practical NLP applications including logic form gen-
eration and image captioning.
Index Terms: recurrent neural networks, natural language un-
derstanding, moment matching networks

1. Introduction
Recurrent neural networks plays a central role in many speech
recognition and natural language processing tasks including
acoustic modeling[1], language modeling [2], sequence genera-
tion [3], machine translation [4, 5, 6], image captioning [7] and
financial applications [8]. RNN models a sequence of discrete
data via a joint decomposable distribution over tokens [2, 9]:

Pθ(W = {w1, w2...wT }|v)
= P (w1|v)

T∏
t=1

P (wt|w1...wt−1, v),
(1)

where the conditioned variable v serves as a starting token
and θ represents the RNN’s parameters. In the training phase,
all ground truth token values w(g)

1 ...w
(g)
t−1 are observed and

can be directly used as RNN’s inputs at each time step, i.e.
P (wt|w(g)

1 ...w
(g)
t−1) (see the supervised mode in Fig.1). How-

ever, in the inference phase, the RNN can only be imple-
mented in the free-running mode because true token values
are no longer available. In such a scenario, the RNN uses
its early-step predictions as surrogating inputs to calculate
P (wt|w(p)

1 ...w
(p)
t−1) (see the free-running mode in Fig.1). This

discrepancy between supervised and free-running modes may
greatly affect the robustness of the trained RNN when it is ap-
plied on testing samples.

To alleviate this discrepancy issue, professor forcing (PF)
[10] has been proposed from the perspective of adversarial
learning [11]. The learning objective of PF is set to fool a dis-
criminator so that it cannot distinguish whether a sequence is
generated in the supervised or the free-running mode. Mathe-
matically, this adversarial learning process implicitly imposes
a strong regularization over the sequences’ probabilistic dis-
tributions, which is an effective way to encourage the trained

RNN to also cover the inherent dynamics of the free-running
mode. While this distribution matching pursuit behind PF is el-
egant, its corresponding training procedures are quite challeng-
ing. The learning objective of PF is built upon a difficult min-
max program requiring very careful optimizations [11]. Such
complicated adversarial learning framework does not only in-
crease PF’s computational costs but can also result in unstable
solution with bad convergence.

The aforementioned discussions naturally lead to a ques-
tion: is there any alternative method that can achieve the simi-
lar goal as PF but exhibits more decent optimization objective?
Inspired by the generative moment matching network (GMN)
[12], we propose a moment-matching RNN (MM-RNN) train-
ing strategy in this work. Our MM-RNN exploits the maximum
mean discrepancy (MMD) [12] to explicitly seek for the opti-
mal match of sequences’ distributions from either supervised or
free-running modes. With appropriate kernel tricks, the MMD
can conduct infinite number of statistic comparisons between
two distributions [13]. Therefore, it is an ideal surrogate to
the complicated adversarial network in distribution matching
[12, 14]. More importantly, the objective function of MM-RNN
only involves quadratic terms that are highly plausible for opti-
mization purpose.

2. Moment matching for RNN training
In this part, we will introduce the moment matching strategy
for RNN training. We will first mathematically define the prob-
lem. Then, we detailed how to incorporate the moment match-
ing training strategy and its kernel tricks [15] into RNN for ro-
bust and efficient training.

2.1. Preliminaries

We discuss the MM-RNN training by considering (xi,Wg
i ) as

the ith pair of input data and labeled sequence in the training set.
There exists a mapping network M that can transform the input
data as a hidden representation, i.e. vi = M(xi). Here, the
input xi can be data in any type including image, sentence and
speech. Then, vi is used as the initial token to start the whole
sequence decoding process in Eq.1. It is possible to run this
RNN in either supervised (blue RNN) or free-running (green
RNN) mode as shown in Fig.1. In the supervised mode, ground
truth token values w(g)

1 ...w
(g)
T are directly used as RNN’s input

at each time step. In the free-running mode, we follow the idea
in [10] to sample w(p)

t ∼ P (wt|w(p)
1 ...w

(p)
t−1, v0) and feed this

sampled token value in RNN at time step t.
The predicted sequence obtained in supervised (resp. free-

running) mode is denoted asWs
i = {wsi1...wsiL} (resp. Wf

i =

{wfi1...wfiL}). For the ease of comparisons at sequence level,
we further design an encoding network E to map the generated
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Figure 1: An overview of moment matching recurrent neural networks training.
.

sentences Ws
i (resp. Wf

i ) into a hidden vector hsi = E(Ws
i )

(resp. hfi = E(Wf
i )). There are many different ways to de-

sign this sequence encoder and we just consider the most widely
used bi-directional LSTM implementation [16]. In Fig. 1, we
noted that the two encoding LSTM share the same parameter
meaning they are essentially the same. The matching pursuit is
to minimize the discrepancy between generative probabilities of
hf = {hfi }Ni=1 and hs = {hsi}Ni=1. In an ideal case, if there is
no difference between these two distributions, the correspond-
ing RNN dynamics in supervised and free-running mode should
also have no distinction.

To achieve this goal, professor forcing (PF) has introduced
an auxiliary discriminator neural network to perform adver-
sarial learning. As indicated in the benchmark GAN works
[11, 17], the discriminator neural network exactly serves the
purpose for distribution comparisons. However, the training
process of the professor forcing model is not easy. Therefore,in
this work, we consider a more efficient and intuitive approach
to non-parametrically compare two pdfs accumulated from hf

and hs.

2.2. Moment matching

We utilize a technique from statistical hypothesis testing known
as maximum mean discrepancy (MMD) to compare statistics
between samples of these two distributions. We follow the idea
in [12] and adopt the mean squared differences as the statistics
of sets hf and hs:

LMMD(h
s, hf ) = 1

N2 ‖
N∑
i=1

ψ(hsi )−
N∑
i=1

ψ(hfi )‖2

= 1
N2 [

N∑
i=1

N∑
i′=1

ψ(hfi )
Tψ(hfi′)

−2
N∑
i=1

N∑
j=1

ψ(hfi )
Tψ(hsj) +

N∑
j=1

N∑
j′=1

ψ(hsj)
Tψ(hsj′)]

(2)

where ψ(·) is considered as a general mapping function. If it is
fixed as the identity function, the loss in Eq.2 just simply com-
pares the sample mean of two distributions. Alternative choices
of ψ can enable the match of higher order moments.

We noted that terms in Eq.2 only involve inner products of
ψ vectors and, therefore, the kernel trick can be applied. We
replace all inner product terms in Eq.2 with a kernel function
k(·, ·), i.e. ψ(yi)Tψ(yj) = k(yi, yj). The kernel trick exhibits

two indispensable properties for distribution matching. First,
kernel maps the sample vector into an infinite dimensional fea-
ture space. In the universal reproducing kernel Hilbert space,
LMMD(h

s, hf ) = 0 if and only if P (hs) = P (hf ) [18]. Sec-
ondly, when we choose universal kernels like Gaussian kernel
as the detailed kernel function k(·, ·), it is easy to get an Taylor
expansion of the feature map ψ that contains infinite number
of terms covering all orders of statistics. This trick allows the
matching of all moments of two statistics [12]. In this paper,
we choose the Gaussian kernel as the default kernel function in
the LMMD computation. This particular selection makes the
final LMMD objective only involve quadratic terms, which are
easily optimized in the RNN’s back-propagation learning step.

We can now define the whole objective function for MM-
RNN:

min
(θM ,θE ,θ)

L = LC(Ws,Wg) + LC(Wf ,Wg)

+ λLMMD[E(Ws), E(Wf ))]
s.t. W s = {W s

i }Ni=1,W
s
i ∼ P sθ (W|vi =M(xi))

W f = {W f
i }Ni=1,W

f
i ∼ P fθ (W|vi =M(xi))

(3)

In Eq.3, Ws (resp. Wf ) are sampled sequences from P sθ (W)

(resp. P fθ (W)) in the supervised (resp. free-running) mode.
We noted that P sθ (W) and P fθ (W) shares the same network pa-
rameter θ implying they are in fact defined from the same RNN.
But this same RNN can be run in different modes. The term LC
denotes the cross entropy loss that measures the difference be-
tween generated sequence and ground truth [19]. LMMD has
been discussed in Eq.2 that tries to match the sequences sam-
pled in different RNN modes.

In Eq.3, in addition to the basic RNN (paired with parame-
ter θ), there are also two extra neural networks M and E with
parameter sets θM and θE to be learned through optimization.
M is the feature mapping network that transforms the input data
as a initial token for RNN. This mapping network’s structure
can only be determined when coming to a particular task [20].
E is the encoder neural network that transforms the generated
sequences as hidden vectors for moment matching. We follow
the same idea in professor forcing [12] to implement this en-
coder network by a bi-directional LSTM. All these three net-
works can be learned in an end-to-end manner by the ADAM
optimizer [21]. The detailed training steps for MM-RNN have
been provided in Algorithm 1.
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Algorithm 1: MM-RNN training
Input : A training dataset containing pairs of

input data and its labeled sequences.
Initialization: Initialize θM in mapping network M , θE

in encoder network E and θ in RNN
1 for k=1...K do
2 Sample a minibatch of N samples X and their

labeled sequencesWg from training set;
3 Get vi =M(xi), i = 1...N ;
4 Use vi and θ to run RNN in supervised mode and

get its corresponding output sequence
Ws = {Ws

i }Ni=1;
5 Use vi and θ to run RNN in free-running mode and

get its corresponding outputWf = {Wf
i }Ni=1;

6 TakeWg ,Ws andWf in Eq.(3) for loss calculation
and back-propogate the loss to update networks’
parameters θM ,θE and θ;

7 end
Output : The well trained RNN with parameter θ;

3. Experiments
In this part, we will conduct experiments on two natural lan-
guage processing (NLP) tasks including logic form generation
and image captioning. Both of these works rely on an explicit
RNN structure for sequence generation. The MM-RNN train-
ing will be compared with the original RNN training strategy
(Ori.) and professor forcing (PF).

3.1. Logic Form Generation from Utterance

Table 1: Examples of two logic form generation datasets with
argument identification

Dataset Length Examples

ATIS 9.8 nonstop flight ci1 to ci0
22.9 (lambda $0 e (and(flight $0)(nonstop $0)

(from $0 ci1)(to $0 ci0)))

GEO 7.6 what state capital is c0
19.1 (lambda $0 e(and(state:t $0)(capital:t $0 c0)))

In this part, we applied MM-RNN for logic form generation
from human utterances which is a fundamental problem in natu-
ral language understanding. This is because computers can only
understand commands in the format of logic forms rather than
our human natural languages. For instance, the generated logic
form can be used as the query to a knowledge base for question-
ing and answering. Unfortunately, human beings do not express
their commands in the way like logic forms. Therefore, it is a
critical step in NLU to map natural language utterances into ex-
ecutable logic forms.

The logic form generation task can be tackled as a seq2seq
learning problem in which the input sequence is an utterance
and the output is the desired logic form. Here, we conduct
experiments on two widely used logic form datasets including
ATIS (5410 queries to a flight booking system) and GEO (880
queries about U.S. geography). Some examples of utterances
with their annotated logic forms are provided in Table 1. The
average lengths for input and output sequences in these two
datasets are also reported. To improve the robustness in han-
dling unknown new words, we follow the augmentation identi-

fication approach [22] to replace entities and numbers in input
with their underlying type names and unique IDs. For instance,
in Table 1, we replace exact city names with symbols ‘c0’ and
‘c1’ on the shown sentence in ATIS dataset. To conduct seq2seq
task, words of input sequence and symbols of the output se-
quence are both converted as a series of one-hot vectors with
one ‘hot’ entry indicating a certain word/symbol. Specifically,
we tried both the LSTM and the attention model on the decoder
side. For the attention model, we use the same structure as in-
troduced in [22]. In this work, all LSTM are implemented with
128 hidden states.

Table 2: Accuracy of the logic form generation task %

Feature encoder ATIS GEO

LSTM

Original 81.6±1.1 80.2±0.8
PF 82.5±0.7 82.9±0.7

MM 84.2±0.7 84.4±0.8

Attention

Original 82.0±1.1 81.7±0.8
PF 83.8±0.9 83.2±0.9

MM 85.7±0.9 85.3±0.8

In each dataset, 80% sentences are randomly selected for
training and the remaining 20% sentences are uniformly divided
into validation and testing sets. We repeat such random splitting
processes for 10 times. The results of three training strategies
are reported in Table 2. In the table, PF and MM-RNN gen-
erally improves the original RNN model on two datasets. The
MM-RNN further improves the performances of PF by using
any feature extractor. The best results on these two datasets are
obtained by our MM-RNN with Attention-based feature extrac-
tor. These experimental findings suggest the equal importance
of network structure and training methods for the final perfor-
mance.

We also report the results by conducting MM-RNN on the
provided training and testing data splits in [22]. MM-RNN ob-
tains the accuracy of 87.1% and 86.8% on ATIS and GEO, re-
spectively. These results are 2.6% and 2.0% higher than the
reported accuracy in the original paper. Computational costs
on the larger ATIS dataset are also recorded. Original RNN
takes 674 seconds to finish 100 epochs. MM-RNN and PF re-
spectively spends 933 seconds and 1, 436 seconds on the same
task. From such comparisons, we get to the conclusion that
MM-RNN only slightly increases the training complexity but
significantly improves the model performances than the origi-
nal RNN model. It also beats the prevalent PF model in both
speed and accuracy.

3.2. Image captioning

In the second task, we applied MM-RNNto a multimodal appli-
cation for image captioning. We train and evaluate our model
using the commonly used MSCOCO dataset [23], which con-
sists of 82,783 images for training, 40,504 for validation, and
40,775 for testing. We noticed that each image corresponds
to 5 ground truth captions. We follow Karpathy et al.[24] to
preporcess the sentences, where all the words are converted to
lower-case, and all non-alphanumeric characters are discards.
We use a word threshold of 2 (i.e. discard all words appear
less than twice) to remove rare words through all sentences.
For result evaluation, we use the coco-caption evaluation API
to calculate BLEU 1∼4 and METEOR (MET) as the reported
accuracy in Table 3.
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Figure 2: Image captioning results by training the captioning RNN with original (black), professor forcing (blue) and moment matching
(red).It is observed from the comparisons that PF can cover more aspects of the explained image and MM intends to over-explain the
image with non-appearing scenarios.

.

The decoding RNN is trained by original method, profes-
sor forcing and MM-RNN. Some image captioning results by
these three methods are shown in Fig.2 with attention model as
the image feature extractor. From these empirical results, we
have found that PF and MM can generate sentences covering
more details about the input image than the original method.
The performances of MM-RNN are even better than PF when
comparing the corresponding results in the third broccoli and
fourth bird images in Fig.2. PF generates wrong sentences that
have described items not covered in the image. However, MM-
RNN are quite reliable that just summarized appearing scenar-
ios without over explanation. These shown cases intuitively ex-
plains the advantages of PF over others. In addition, we will
provide more quantitative evaluations to compare different ap-
proaches.

Table 3: Image captioning results on MSCOCO by using both
CNN and attention model as the basic visual feature extractor.
The sentence decoder structure is the same but are trained with
different methods.

B1 B2 B3 B4 MET

CNN+Ori. 0.666 0.451 0.304 0.203 0.192
CNN+PF 0.723 0.471 0.335 0.251 0.223

CNN+MM 0.741 0.544 0.382 0.281 0.253

Atten.+Ori. 0.718 0.504 0.357 0.250 0.230
Atten.+PF 0.723 0.512 0.367 0.261 0.234

Atten.+MM 0.775 0.563 0.417 0.302 0.257

We further report BLEU 1∼4 and METEOR (MET) as
quantitative measures to compare these three RNN training
strategies in Table 3. MM-RNN beats all other two methods
on this image captioning task. We also reported the computa-
tional costs of different training approaches. The complexity
are reported in Table.4 by using either convolution neural net-
work (CNN) or attention model as the image feature extractor.
The decoder part are implemented by the same LSTM structure
but are trained via three different methods including original
training, professor forcing and our moment matching strategy.
All models are implemented by TensorFlow with 16 GPUs and
the time costs are reported in hours. From the computational
costs comparisons, we have observed that MM-RNN is a bit
heavier than the original RNN training but is far more efficient

than professor forcing. This is because both RNN and MM
shows an explicit objective function that can be optimized di-
rectly. However, the PF involves the min-max optimizations of
multiple neural networks which is more complicated than ours.

Table 4: Computational time comparisons by using different im-
age feature extractors and different RNN training methods (in
hours)

CNN Extractor Attention Model

RNN. 1.5h 2.7 h
PF 2.6h 4.9h

MM 1.8h 3.4h

4. Conclusions
We have introduced a MM-RNN training strategy to fill the
gap of implementing RNN in the training and inference phases.
MM-RNN is simple in concept, fast in implementation and reli-
able in performance. We ascribe the successes of it to the inspir-
ing moment matching learning objective in Eq.2. On the other
hand, while its competitor professor forcing also addressed the
similar learning purpose, its optimization yield to a more com-
plicated framework with a min-max adversarial loss. Therefore,
it is less efficient and less robust than the MM-RNN model. In
this task, we mainly consider experiments on the machine trans-
lation (logic form generation) and image captioning tasks be-
cause these two tasks are widely regarded as the most challeng-
ing machine learning topics in the contemporary AI research.
RNN training is a common topic that has encouraged a large
number of real world applications in the speech, natural lan-
guage and finance field. We hence believe more complicated
and practical problems can be well solved by this general mo-
ment matching strategy in the future.

5. References
[1] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory re-

current neural network architectures for large scale acoustic mod-
eling,” in Fifteenth annual conference of the international speech
communication association, 2014.

[2] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudan-
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