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Abstract
While there has been substantial amount of work in speaker

diarization recently, there are few efforts in jointly employing
lexical and acoustic information for speaker segmentation. To-
wards that, we investigate a speaker diarization system using
a sequence-to-sequence neural network trained on both lexical
and acoustic features. We also propose a loss function that al-
lows for selecting not only the speaker change points but also
the best speaker at any time by allowing for different speaker
groupings. We incorporate Mel Frequency Cepstral Coeffi-
cients (MFCC) as an acoustic feature stream alongside lexi-
cal information that are obtained from conversations from the
Fisher dataset. Thus, we show that acoustics provide comple-
mentary information to the lexical modality. The experimental
results show that sequence-to-sequence system trained on both
word sequences and MFCC can improve on speaker diarization
result compared to the system that only relies on lexical modal-
ity or the baseline MFCC-based system. In addition, we test the
performance of our proposed method with Automatic Speech
Recognition (ASR) transcripts. While the performance on ASR
transcripts drops, the Diarization Error Rate (DER) of our pro-
posed method still outperforms the traditional method based on
Bayesian Information Criterion (BIC).
Index Terms: Speaker Diarization, Speaker Segmentation, Se-
quence to Sequence Models

1. Introduction
Speaker Diarization is an important pre-processing step towards
a complete Automatic Speech Recognition (ASR) system that
includes multiple speakers. Further, speaker diarization infor-
mation plays a crucial role in speech analytics such as turn-
taking characteristics and is critical in many behavioral analyt-
ics applications [1, 2]. Poor performance of speaker diarization
is bound to deteriorate the performance of subsequent models
such as ASR, emotion recognition, behavioral informatics, and
topic analysis systems. Speaker segmentation is a critical com-
ponent of this process and heavily affects the performance of
speaker diarization and hence all subsequent modules.

In general, a speaker diarization system consists of two
main parts: segmentation and clustering. Segmentation aims to
detect all speaker change points. The most widely used method
is the Bayesian Information Criterion (BIC) based segmentation
[3, 4]. More recently, methods based on Recursive Neural Net-
works (RNN) have shown improved performance on speaker
segmentation [5, 6]. In addition, Joint Factor Analysis (JFA) [7]
has also shown promising results. Further, there are significant
efforts in speaker segmentation and diarization with pre-trained
Deep Neural Networks (DNN) both through supervised-training
[8] and through unsupervised-training [9, 10].

Despite the very active field, there has been very little ef-
fort in exploiting lexical information towards this task. Most

of the research that involves lexical information or transcript is
relating to speaker identity [11, 12] or speaker role [13, 14]. In-
dia et al. employed character level information via an LSTM
network with a character level Convolutional Neural Network
(CNN) and i-vector training on transcript [15].

One likely reason that transcripts from ASR have not been
used for diarization is that we often are hesitant to run ASR be-
fore diarization since that will be more noisy that employing
these two components in reverse order. However that is not a
constraint (except in computation resources) as the ASR can be
re-run after diarization a second time. Further, along recent ef-
forts of research including in our group, of joint training, future
implementations can jointly optimize for diarization and ASR.

In this work, we propose a system that incorporates both
lexical cues and acoustic cues to build a system closer to
how humans employ information. We investigate a sequence-
to-sequence model (seq2seq) that integrates both lexical and
acoustic cues to perform speaker segmentation and speaker di-
arization. Sequence-to-sequence models have been widely used
for language translation [16], end to end ASR systems [17] and
text summarization[18]. The advantage of seq2seq over Recur-
rent Neural Network (RNN) based models (LSTM [19], GRU
[20]) is that it can summarize the whole sequence into an em-
bedding and then pass it to the decoder. Moreover, it can in-
tegrate information and process variable length sequences. In
doing so, such a model can capture temporally encoded infor-
mation from both before and after the speaker change points. In
addition, the attention mechanism of this model helps in captur-
ing the important parts of characterizing the speaker(s).

In our work we employ dyadic-interaction data to train and
test the proposed system. Our proposed model operates on
both reference transcript data and, critically for realistic deploy-
ments, on ASR hypotheses.

2. Proposed Speaker Diarization System
2.1. Network Architecture

Our proposed sequence to sequence model consists of encoder,
decoder and attention model that connects encoder and decoder.
The encoder consumes a sequence of word representations,
along with acoustic features (MFCC) described in sec. 2.2, as
shown in Fig. 1. The decoder produces a sequence of words
along with speaker IDs during the speaker change points, as
shown in Fig. 2. We use GRU with a 256-dimensional hid-
den layer and an attention model that has been applied to many
state-of-the-art machine translation systems [21].

2.2. Feature processing

In our proposed method the features are time-synchronous. All
the features align with the word boundaries as follows:

WORD: The word sequences we use are obtained either from
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Figure 1: The encoder side of the proposed network.

Table 1: An example of source sentence and target sentence in
training data.

Source hello hi my name is James hi James
Target hello ♯A hi ♯B my name is James ♯A hi James

the reference transcripts or from ASR outputs. We use
a linear layer to convert one-hot word vector into word
embedding as described in Fig. 1. The source sequence
is 32 words in the reference transcripts or ASR outputs.
The target sequence for training is 32 words and added
speaker turn tokens as in the example sentence in table1.

MFCC: We use 13-dimensional MFCCs extracted with a 25ms
window and 10ms shift. Detailed specifications follow
the default settings in [22]. We then average the MFCC
features for the word-segment and thus derive a 13 × 1
vector for each word.

2.3. Encoder and input features

In our proposed system, the encoder integrates MFCC feature
vectors and word embeddings. Fig.1 shows how the proposed
encoder is structured. Word embeddings and MFCC features
are connected through linear layers. After the fully-connected
layers, the embeddings are concatenated. The concatenated
vector is then fed to the GRU that is the encoder of the seq2seq
system. We use 256 hidden unit size, word embedding size
and output layer of linear layer for MFCC vector. The num-
ber of hidden layers were chosen to be equal for both MFCC
and word embedding because there is a performance degrada-
tion when these embedding size are different. However, more
optimization needs to take place for the optimal system.

2.4. Decoder and loss function

In our proposed system, the decoder outputs a word sequence
and the speaker turn token “♯A” and “♯B”. Fig. 2 describes the
decoder side in our proposed system. Unlike word tokens, the
loss of the speaker turn tokens are calculated in a different way
that ignores the speaker IDs and only focuses on speaker group-
ings. For example, the speaker turn sequence of “♯A ♯B ♯A” is
considered equal to “♯B ♯A ♯B”. That is, the loss function in
our proposed system calculates two versions of losses: original
and flipped version of speaker turn tokens. Between these two
losses, our loss function selects the smaller loss. This loss func-
tion also avoids learning the probability between speaker turn
tokens and words in the target sequences in the training set.

Figure 2: The decoder side of the proposed sequence to se-
quence model.

2.5. Speaker Turn Estimation

To maximize the accuracy of speaker turn detection, we em-
ploy shift and overlap scheme to predict the speaker turn. Fig. 3
explains how speaker turn prediction is done. A target win-
dow that has 32 word length sweeps the whole session from
the beginning to the end. For each target window, we pre-
dict speaker turn tokens with our trained sequence to sequence
model. At each prediction, we extract 32 words and 32 MFCC
vectors from transcripts and audio signals, respectively. A set
of speaker turns for a session is estimated through the following
process in accordance with the indices in Fig, 3.

1. Obtain a new word sequence and estimated speaker turn to-
kens from decoder outputs.

2. Form a speaker turn vector by assigning each word the near-
est speaker turn token.

3. Store the speaker turn vector that is obtained from step 2
in a cumulative speaker turn sequence which is the matrix that
sequentially stores all the speaker turn vectors obtained so far.
Flip the speaker turn vector if flipping the speaker turn vector
gives less hamming distance with all the other speaker turn to-
kens in cumulative speaker turn sequence.

4. Store the speaker turn vector from step 3 into the cumulative
speaker turn sequence. Shift one word to the right and feed next
32 words and 32 MFCC vectors to the encoder of the proposed
system.

After finishing the above process by shifting 32 word window
to the end of the session, we determine the final speaker turn
decision by taking a majority vote. In this way, a word in a
session incorporates 32 different predictions to determine the
speaker turn.

2.6. Clustering

We will evaluate on diarization accuracy we therefore employ
our SCUBA, BIC based agglomerative clustering algorithm
based on [4] to perform the clustering step. For the agglom-
erative clustering we employ the raw frame-level MFCC as fea-
tures. We obtain the segmented MFCC streams using speaker
turn information that is produced from the process described
in 2.5. This clustering algorithm is applied to all of the mod-
els in this paper, including the LIUM baseline. For the baseline
systems, the process mentioned in 2.5 is replaced with other
methods while same agglomerative clustering algorithm is ap-
plied.

3. Experimental Results
Our proposed system is tested with two different datasets: those
stemming from reference transcription and those from automat-
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Figure 3: Decoder outputs and overlapping speaker turn vec-
tors.

ically derived ASR hypotheses.
To train our proposed system with dialogue, we train our

proposed system on Fisher English Training Speech Part 1 and
Part 2 [23] for both lexical cues and acoustic cues. This results
in 11,112 training dialogs comprised of approximately 19 mil-
lion words.

Before training the proposed system, we randomly chose
and separated 20 sessions as a test set and 567 sessions as a
dev-set from the original Fisher dataset. These are used as
evaluation in the case we employ clean transcripts. For evalua-
tion using ASR outputs, we also use Switchboard-1 Telephone
Speech Corpus [24] to ensure complete train-test separation and
domain generalization. Although the original recordings were
2-channel telephony (1 per speaker) we generate single chan-
nel signals by mixing down to mono. For the word alignment
information, we use forced-alignment to obtain the word align-
ment information for Fisher dataset since word-level alignment
information is not provided in Fisher dataset while speaker turn
level alignment is provided. For Switchboard-1 dataset, we use
the provided word alignment information and speaker turn level
alignment information. With this alignment information, we
create the ground truth diarization labels for subsequent evalua-
tion. Due to the overlaps in the data the lower-bound diarization
error is not zero, and we will thus also denote that in the tables
below.

As a benchmark of our proposed method we employ LIUM
Speaker Diarization Tools [25] which contains a Speaker Ac-
tivity Detection (SAD) system and a speaker segmentation sys-
tem. The LIUM script that we use performs MFCC feature ex-
traction, SAD and speaker segmentation sequentially. We use
default settings for all the parameters. The clustering step is
employing the same algorithm as all other methods in this pa-
per (i.e., LIUM segmentation and SCUBA clustering)

A second baseline is to employ agglomerative clustering
for diarization but by employing the word boundaries as seg-
mentation. For convenience, we refer to this model as WS. WS
baseline can verify the merit of our proposed model since we
can compare whether the performance is stemming from word
alignment or speaker turn probability when we estimate with
our proposed system. For reference transcript based test, WS
is obtained from word alignment data in the transcript and for
ASR transcript based test, WS is obtained from word alignment
data from ASR transcript. We are using Diarization Error Rate
(DER) as a performance metric for all experiments. To mea-
sure the DER metric, we employ the md-eval software in RT06S
dataset [26] with the forgiveness collar of 0.25 seconds.

Figure 4: Dev-set accuracy on training.

3.1. Training of sequence to sequence model

We train and test two different models separately. Each model
employs the same architecture and the same training conditions
except the feature types. The first model is trained only on word
embeddings while the second model is trained on both word em-
beddings and MFCC. For convenience, we will refer to these as
W model and WM model respectively. We train each model un-
til convergence (20 epochs). We use teacher forcing [27] ratio
of 0.5 to speedup training. Fig. 4 shows the dev-set accuracy
while training. The WM model clearly shows improved perfor-
mance over W model. Note that accuracy in Fig. 4 is accuracy
measured with word sequence that contains speaker turn tokens
and word tokens. Thus, this accuracy does not always mean
better segmentation or diarization accuracy.

3.2. Experiment on Reference Transcripts

First, we do an experiment using reference transcripts. In this
case MFCC features are obtained using the oracle word align-
ments. Thus, we use accurate word embedding and temporal
information of each word. Table 2 shows the results we ob-
tained from transcript data.

The result clearly shows that incorporating MFCC features
helps the performance of diarization when the word embed-
dings and temporal information are accurate. In addition, W
model and WM model also outperformed word-level segmen-
tation (WS) based result. This suggests that applying our pro-
posed model gives a merit over simply using word-alignment
information as segmentation result. We also test the diarization
system with ground truth speaker label per word and it shows
the accuracies of 16.22% and 18.06% for Fisher and Switch-
board data respectively. This is due to the frequent overlaps
in dialogues and inaccurate labeling of speaker turn level tran-
script data. Therefore, “Oracle” DER in table 2 is the best per-
formance we can achieve with any algorithm. To check the per-
formance of the proposed system in different way, we also mea-
sure Word-level Diarization Error Rate (WDER) which means
“who says this word”. Table 3 shows WDER result for tran-
script based experiment. Since there are two speakers in this
experiment, the WDER also shows similar result to the DER
result where WM model shows nearly 4% improvement over W
model.

1375



Table 2: DER on transcription data.

DER(%) W WM WS Oracle LIUM
Fisher 28.02 24.26 44.53 16.22 77.45

Switchboard 27.89 22.44 46.4 18.06 66.57

Table 3: WDER on transcription data.

WDER(%) W WM
Fisher

Transcript 16.42 12.32

Switchboard
Transcript 12.4 8.56

3.3. Experiment on ASR transcript

For ASR transcripts, we use the Kaldi Speech Recognition
Toolkit [28] and ASR model trained on whole Fisher English
Speech data. As a test-set, we choose the 30 audio files that
have lowest index in each of 30 folders in Switchboard-1 dataset
for reproducibility of our experiment. Table 4 shows the results
from ASR based experiment. Unlike in the case of reference
transcripts, WM model did not improve the performance. How-
ever, ASR based results are still better than diarization based
on segmentation result obtained from LIUM Speaker Diariza-
tion Tools. In addition, WS model also performs better than
LIUM Speaker Diarization Tools, which indicates using word-
level segmentation from ASR can still perform better than BIC
based segmentation system.

3.4. WER vs DER

Since we test the improvement by incorporating acoustic cues
with transcript data, performance degradation in the experiment
with ASR transcript is solely caused by poor ASR Word Error
Rate (WER). The average WER for 30 Switchboard session is
35.15%. Fig. 5 shows the scatter plot between WER vs DER
for the experiment with ASR transcript (Table 4). As we can
see in Fig. 5, no session shows low DER when WER is high.
However, although WER is pretty low, DER can be very high.
Based on this outcome, we could conclude that low WER is
necessary condition for low DER, not the sufficient condition.

4. Discussion
Comparing the two experiments using the reference transcripts
and ASR transcripts with our proposed system shows that ASR
performance hugely affects the performance of DER. However,
the experiment with transcript still shows that acoustic cues can
improve the diarization performance. Therefore, we can con-
clude that acoustic cues can be integrated with lexical cues but
the ASR performance is critical. Further we believe that many
of the errors that are made by the ASR in the segmentation step
may create unrecoverable errors, and hence this points to poten-
tial benefits of using lattice information and exploiting the ASR
uncertainty.

5. Conclusions
In this paper, we investigated the way to integrate lexical cues
and acoustic cues with sequence to sequence model to improve
speaker diarization performance. The results show strong sup-
port that lexical information can improve the speaker diarization
system. We also see that ASR performance plays a crucial role

Table 4: DER on ASR transcript and baseline system.

DER(%) W WM WS Oracle LIUM
Switchboard

ASR 38.64 50.95 46.02 18.06 66.57

Figure 5: Scatter plot of WER vs DER

to the performance of our proposed system and poor WER de-
grades the proposed system trained on both acoustic features
and word embeddings. The future work might include improv-
ing performance by training data on ASR transcript including
multiple-hypotheses to provide alternate word alignment and
segmentation points. Further we will investigate the use of al-
ternate acoustic feature representations such as i-vector or em-
beddings obtained from neural networks[10, 9]. In addition, a
fusion of frame and word level segmentation will also be con-
sidered to increase flexibility on segmentation decisions.
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[15] M. À. India Massana, J. A. Rodrı́guez Fonollosa, and F. J. Her-
nando Pericás, “Lstm neural network-based speaker segmentation
using acoustic and language modelling,” in INTERSPEECH 2017:
20-24 August 2017: Stockholm. International Speech Commu-
nication Association (ISCA), 2017, pp. 2834–2838.

[16] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in Advances in neural information
processing systems, 2014, pp. 3104–3112.

[17] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend
and spell: A neural network for large vocabulary conversational
speech recognition,” in Acoustics, Speech and Signal Processing
(ICASSP), 2016 IEEE International Conference on. IEEE, 2016,
pp. 4960–4964.

[18] R. Nallapati, B. Zhou, C. Gulcehre, B. Xiang et al., “Abstrac-
tive text summarization using sequence-to-sequence rnns and be-
yond,” arXiv preprint arXiv:1602.06023, 2016.

[19] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
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