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Abstract 

Automatically detecting pathological voice disorders such as 

vocal cord paralysis or Reinke’s edema is a challenging and 

important medical classification problem. While deep learning 

techniques have achieved significant progress in the speech 

recognition field there has been less research work in the area 

of pathological voice disorders detection. A novel system for 

pathological voice detection using convolutional neural 

network (CNN) as the basic architecture is presented in this 

work.  The novel system uses spectrograms of normal and 

pathological speech recordings as the input to the network. 

Initially Convolutional deep belief network (CDBN) are used 

to pre-train the weights of CNN system. This acts as a 

generative model to explore the structure of the input data using 

statistical methods. Then a CNN is trained using supervised 

back-propagation learning algorithm to fine tune the weights.   

It will be shown that a small amount of data can be used to 

achieve good results in classification with this deep learning 

approach.  A performance analysis of the novel method is 

provided using real data from the Saarbrucken Voice database.  

Index Terms: pathological voice detection, convolutional 

neural network (CNN), Convolutional deep belief network 

(CDBN), deep learning 

1. Introduction 

Voice pathologies affect the larynx and result in irregular 

vibrations of the vocal folds. Poor voice can impact on 

individual’s ability to communicate both socially as well as in 

the work place, thus reducing quality of life, and it has a 

significant impact on economy considering the costs of medical 

diagnosis and treatment[1]. 

Traditional diagnostic method of voice pathologies relies 

on clinician’s experiences and on expensive devices such as 

laryngoscope, endoscope etc. However, computer-aided 

medical systems for diagnosis of voice pathologies have been 

popular due to major advance in signal processing techniques. 

These complementary tools are usually non-invasive and non-

subjective, which generally are an advantage in medical field. 

A lot of research related to automatic detection of voice 

pathologies has been carried out in the past few decades. In this 

context, features are extracted from the speech recordings and 

they are then processed by classifiers to distinguish normal 

voice instances from pathological voice recordings. These 

features are mainly derived from two research fields. One is 

from speech recognition applications, with signal processing 

tools used to automatically detect features such as Mel-

Frequency cepstral coefficients (MFCC), linear prediction 

cepstral coefficients (LPCC) and energy and entropy of discrete 

wavelet packets[2-4]. Other features come from voice quality 

measurement according to physiological and etiological 

research. While pitch, jitter and shimmer are used to detect the 

roughness of the speech, other characteristics such as harmonic-

to-noise ratio (HNR), normalized noise energy (NNE), glottal-

to-noise ratio (GNR) and cepstral peak prominence (CPP) 

represent the breathiness of the speech[5].  

Most of the research works use the Massachusetts Eye and 

Ear Infirmary (MEEI) database. However, healthy voice 

recordings and pathological voice recordings in this database 

are recorded in two different environments[6], which make it 

hard to distinguish whether it is discriminating environments or 

voice features. The Saarbruecken Voice Database is a 

downloadable database with all recordings sampled at 50 kHz 

and with 16-bit resolution. This database is relatively new so 

that little research has been carried out through it. However, the 

audio samples are recorded in the same environment so that it 

is an ideal database for this work.  

It is shown that state-of-the-art signal processing 

techniques, which were applied in speech recognition field 

before, also achieved significant progress in the automatic 

pathological voice detection field. For example, Martínez et al. 

in [7] use Gaussian mixture model (GMM) on Saarbruecken 

Voice Database, and achieved 67% classification accuracy with 

neutral sustained vowel /a/. However, with enhanced 

computational abilities of hardware and improvement of 

machine learning algorithms, deep neural network (DNN)-

hidden Markov model (HMM) is gradually replacing the 

traditional GMM-HMM[8] to become the popular method for 

speech recognition. To date deep learning methods have not 

commonly been used in pathological voice detection mainly 

because data available in this research field is limited, as a DNN 

requires large amount of data to be trained.  

Hinton et al. in [9] proposed Restricted Boltzmann Machine 

(RBM) as an unsupervised method for pre-training DNN to 

achieve global minima precisely. As a generative model, it will 

improve the deep learning performance even on a small dataset. 

Convolutional Deep Belief Networks (CDBN) were proposed 

by Lee et al.[10] as an advanced specific structure for pre-

training CNN.  

In this paper, we propose a novel deep learning method to 

automatically discriminate pathological voice and healthy 

voice. A convolutional neural network (CNN) structure is 
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utilized in this work to analyze spectrograms of speech 

recordings automatically.  CDBN is used for pre-training the 

weights and avoid overfitting problems. 

The rest of the paper is organized as follows. Section 2 

describes the methodology in detail. In section 3, results are 

presented and further discussed. Finally, conclusions are drawn 

in section 4. 

 

Figure 1: Block diagram of proposed pathological 

voice detection system 

2. Methodology 

Figure 1 shows the block diagram of proposed pathological 

voice detection system. First, pre-processing steps, such as 

resampling, reshaping techniques, are applied to the speech 

recordings. Short-time Fourier transform (STFT) technique is 

then applied to compute the spectrograms of the speech 

recordings as the input to the CNN system. Weights in the CNN 

system are pre-trained using CDBN and fine-tuned with back-

propagation method. The trained CNN system is capable of 

extracting features automatically and classifying audio samples. 

2.1. Input Data to CNN system 

A CNN contains “feature extractors” which are commonly 

applied to feature maps. Therefore, speech recordings are 

transformed from one-dimensional signals to two-dimensional 

spectrograms.  

2.1.1. Database 

This work uses the Saarbruecken voice database which was 

recorded by the Institute of Phonetics of Saarland University in 

Germany. This database contains 71 different pathologies with 

speech recordings from over 2000 individuals. Each participant 

file contains recordings of sustained vowels /a/, /i/ and /u/ in 

neutral, low, high and low-high-low intonations and a 

continuous speech sentence “Guten Morgen, wie geht es 

Ihnen?” (“Good morning, how are you?”). Sustained vowel is 

applied in this work because it is stationary throughout time and 

easier to see the changes. 

Six pathologies are selected as the pathological group, 

including laryngitis, leukoplakia, Reinke’s edema, recurrent 

laryngeal nerve paralysis, vocal fold carcinoma and vocal fold 

polyps. These pathologies are all organic dysphonia which are 

caused by structural changes in the vocal cord. We use 

sustained vowel /a/ at neutral pitch of each individual, of which 

482 are healthy and 482 are diagnosed with pathologies (140 

laryngitis, 41 leukoplakia, 68 Reinke’s edema, 213 recurrent 

laryngeal nerve paralysis, 22 vocal fold carcinoma and 45 vocal 

fold polyps). The data is divided into training set and testing set, 

containing 75% and 25% of samples respectively. 

2.1.2. Pre-processing and organization of input data 

First, the original speech is resampled at 25 kHz in the pre-

processing step. The aim of this step is to reduce the amount of 

data in feature map to boost the training process. Furthermore, 

STFT is applied to transform the time-domain signal into 

spectral-domain signal. In this step, each file is divided into 10 

ms Hamming window segments, with 50% overlap between 

consecutive windows. Finally, the spectrogram is reshaped to 

as common size of 60*155 points to remove parts which contain 

no information. In this case, unwanted noise is dismissed and 

essential features are preserved.  The comparison of input 

feature maps between normal voice and pathological voice is 

shown in Figure 2. 

 

Figure 2: Comparison of input feature maps 

(a).spectrogram of one normal voice; (b).spectrogram 

of one pathological voice 

 

Figure 3: CNN structure in one layer 

2.2. CNN architecture 

CNN is built by an input layer and several hidden layers. Each 

individual layer consists of convolutional ply 𝐻  and pooling 

ply 𝑉, which is shown in Figure 3. For intonations, input feature 

map is set as 𝑉𝑙(𝑙 = 1, … , 𝐿) , and convolutional feature map is 

set as 𝐻𝑘(𝑘 = 1, … , 𝐾). Weights (filters) are shared among all 

the units on convolutional ply, on which each unit is computed 

as, 

ℎ𝑚
𝑘 = 𝜎(∑ ∑ 𝑣𝑙,𝑛+𝑚−1𝑤𝑙,𝑛

𝑘

𝑁𝑊

𝑛=1

𝐼

𝑙=1

+ 𝑤0
𝑘)  (1) 

where 𝑣𝑙,𝑚 means the m-th unit of the l-th input ply 𝑉, and ℎ𝑘,𝑚 

means the m-th unit of the k-th convolutional ply 𝐻. 𝑁𝑤  is set as 

the size of filters (weights), 𝑤𝑙,𝑛
𝑘  is the n-th unit of the weight. In 

this procedure, features are detected locally and automatically 

by shared-weights throughout the feature map.  

In order to reduce the resolution in convolutional ply and 

reduce the computational complexity, pooling from 

convolutional map is essential. Maximization or averaging 

function are commonly applied to build pooling ply. We set 𝐺 
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as the size of pooling window, using maximization function, and 

unit on pooling ply is defined as,   

𝑝𝑚
𝑘 = 𝑚𝑎𝑥𝑛=1

𝐺  ℎ𝑙,(𝑚−1)×𝑠+𝑛  (2) 

where 𝑠 is stride when the pooling windows shifting among the 

convolutional ply.  

The whole CNN architecture is shown in Figure 4. There is 

a total of 10 hidden layers. In the first hidden layer, the size of 

filters is 8*3 and the stride is 1. The size of pooling window is 

4*4 and stride is 1. After the first hidden layer, each layer is 

convolved with 8 filters with the shape 8*3*8 and stride of 1. 

Max-pooling windows are 4*4 and activation function is RELU 

throughout the neural network. “Same” Padding strategies are 

applied after each convolution or pooling step.  

Finally, the feature map is formed into a Dense Layer (fully-

connected layer), to train the model for classification. L2-

regularization is applied to avoid overfitting problems. 

Parameters such as stride, the size of the filters in each layer, 

and number of layers were selected after hundreds of 

experiments. We use rectangular filter window due to the 

characteristics of spectrograms.  

 

Figure 4: CNN architecture 

2.3. Generative Pre-Training 

Deep learning is a “black box” which requires a large amount 

of data and weight tuning. In contrast, Bayesian methods are 

robust and require less data, but perform slightly poorer than 

deep learning techniques[11]. To combine the complementary 

advantages of these two methods, generative models were 

developed to improve the deep learning performance on small 

data set and eliminate the over-fitting problems.  

In deep learning structures, a region of weight-space is 

found by generative model and helps the network to converge 

to a global minimum rapidly. Convolutional Restricted 

Boltzmann Machine (CRBM) is a typical generative model, and 

is an extension to the RBM with visible ply and hidden ply as 

images, which is suitable for CNN settings. The model is 

trained to reach thermal equilibrium state, which is the deepest 

energy minimum state. In this state, hidden ply is able to model 

the structure of the input data. 

CRBM consists of two plies, the visible (input) ply 𝑉, and 

a hidden (convolutional) ply  𝐻 . Similar to CNN setting, 

weights 𝑊𝑘 between input ply and convolutional ply are shared 

among all locations in the hidden ply. Hidden units are binary-

valued while visible units can be real-valued or binary-valued. 

 Assume the size of visible ply is 𝑁𝑉 , and the size of hidden 

ply is 𝑁𝐻. There are K filters (weights) and each weight 𝑊𝑘 is 

convolved with visible ply, and there are bias 𝑏𝑘 for each weight 

and bias 𝑐 for visible ply. The energy function with binary input 

is defined as, 

𝐸(𝒗, 𝒉) = − ∑ ∑ ∑ ℎ𝑗
𝑘

𝑁𝑊

𝑟=1

𝑁𝐻

𝑗=1

𝐾

𝑘=1

𝑊𝑟
𝑘𝑣𝑗+𝑟−1 − ∑ 𝑏𝑘 ∑ ℎ𝑗

𝑘 − 𝑐 ∑ 𝑣𝑖

𝑁𝑉

𝑖=1

𝑁𝐻

𝑗=1

𝐾

𝑘=1

 (3) 

 

The energy function with real-value data input is defined as, 

𝐸(𝒗, 𝒉) =
1

2
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(4) 

The joint distribution is defined as, 

𝑃(𝒗, 𝒉) =
1

𝑍
 exp (−𝐸(𝒗, 𝒉)) (5) 

Similarly, CRBM is trained using block Gibbs Sampling[10] as 

an extension to Gibbs Sampling in RBM, to maximize the 

similarity of distribution between construction visible ply and 

input visible ply, in which case reach the equilibrium state.  

Stacks of CRBM constitutes convolutional deep belief 

network (CDBN). After the first layer of CRBM is trained, the 

activations are sent to the second layer as input and the weights 

are “frozen”, and the rest layers can be done in the same manner. 

Since visible ply in the first layer is clamped with real-valued 

data, Gaussian visible units are applied for the first CRBM layer.  

After pre-training the weights in each layer, the well-known 

back-propagation are applied for fine-tuning the weights for 

better classification result.  

2.4. Experimental Setup 

The framework for the training process was developed in 

Python using Tensorflow[12]. Training data is divided as 256 

samples in each mini-batch, and is trained with GPU NVidia 

GTX1070 for higher speed. In order to make the training 

process more robust, an Adam optimizer[13] was applied as an 

adaptive optimizer for better performance. Delta value of L2 

regularization is set to 0.0001 and the maximum epochs of 

training is 100.  

CDBN sparsity is set as 0.6 and weights pre-trained in the 

first two CRBM layers are set as initialization of CNN.  
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3. Results 

Table 1 and Table 2 present the confusion matrix of validation 

dataset and testing dataset. In Table 3, classification results in 

different metrics are listed. Sensitivity (SN) and Specificity (SF) 

are calculated in (6). Sensitivity reveals the performance on 

detecting the pathological voice files, and Specificity reveals 

the proportion of correctly detected healthy voice files. 

Precision (P) and F1-score (F1) are presented in (7), where 

Precision reveals the proportion of relevant pathological voice 

files.  

𝑆𝑁 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 𝑆𝐹 =  

𝑇𝑁

𝐹𝑃 + 𝑇𝑁
  (6) 

𝑃 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 𝐹1 = 2

𝑃 ∙ 𝑆𝑁

𝑃 + 𝑆𝑁
   (7) 

True Negative (TN) means that healthy voice recordings are 

correctly detected and True Positive (TP) means that 

pathological voice recordings are correctly detected; False 

Negative (FN) represents that pathological voice recordings are 

detected wrong and False Positive (FP) represents that healthy 

voice recordings are detected wrong. 

It can be seen from Table 3 that validation set accuracy and 

testing set accuracy are 68% and 71% respectively. Compared 

to [7], it shows small progress when using small dataset. 

However, there is still large space for improvement if more 

experiments are conducted and several hyper-parameters are 

tuned.  In Table 4, CNN system with and without CDBN pre-

training reveals difference in classification result. It is shown 

that when using CDBN to initialize the weights, CNN tuning 

becomes more robust, with similar performance on validation 

dataset and testing dataset. In this case, it is proved that CDBN 

can avoid over-fitting problems to some extent. However, the 

testing set accuracy is less when using CDBN pre-trained 

weights, which reveals that accuracy might be affected when 

the system is more robust.  

Table 1: Confusion matrix of validation dataset 

 True: 

pathological 

True: 

healthy 

Prediction: pathological 53 30 

Prediction: healthy 16 46 

Table 2: Confusion matrix of testing dataset 

 True: 

pathological 

True: 

healthy 

Prediction: pathological 55 23 

Prediction: healthy 19 48 

Table 3: Metrics to evaluate classification result 

 SN SP p F1 ACC 

Validation dataset 0.77 0.60 0.64 0.70 0.68 

Testing dataset 0.74 0.68 0.71 0.72 0.71 

Table 4: Classification accuracy with or without 

CDBN pre-training 

 CNN CNN + CDBN 

Validation dataset 0.66 0.68 

Testing dataset 0.77 0.71 

4. Conclusions 

A novel algorithm for pathological voice detection is 

introduced in this work. Convolutional neural network is shown 

to effectively extract features from spectrograms of voice 

recordings and diagnose voice disorders. Convolutional deep 

belief network helps initialize the weights and makes the system 

more robust. However, a tradeoff must be struck between 

robustness and accuracy. In future work, more experiments will 

be conducted to balance this tradeoff, and parameters will be 

tuned to achieve better performance. 

5. Acknowledgements 

The authors would like to acknowledge Capita plc and 

University of Strathclyde for their financial support with this 

study. 

6. References 

[1] K. Verdolini and L. O. Ramig, "Occupational risks for voice 

problems," Logopedics Phoniatrics Vocology, vol. 26, no. 1, pp. 
37-46, 2001. 

[2] A. A. Dibazar, S. Narayanan, and T. W. Berger, "Feature analysis 

for automatic detection of pathological speech," in Proceedings 

of the Second Joint 24th Annual Conference and the Annual Fall 

Meeting of the Biomedical Engineering Society] [Engineering in 
Medicine and Biology, 2002, vol. 1, pp. 182-183 vol.1. 

[3] M. K. Arjmandi and M. Pooyan, "An optimum algorithm in 

pathological voice quality assessment using wavelet-packet-based 

features, linear discriminant analysis and support vector 

machine," Biomedical Signal Processing and Control, vol. 7, no. 
1, pp. 3-19, 2012/01/01/ 2012. 

[4] M. Hariharan, K. Polat, and S. Yaacob, "A new feature 

constituting approach to detection of vocal fold pathology," 

International Journal of Systems Science, vol. 45, no. 8, pp. 1622-
1634, 2014/08/03 2014. 

[5] A. Al-nasheri et al., "An Investigation of Multidimensional Voice 

Program Parameters in Three Different Databases for Voice 

Pathology Detection and Classification," Journal of Voice, vol. 

31, no. 1, pp. 113.e9-113.e18. 
[6] G. Muhammad et al., "Voice pathology detection using interlaced 

derivative pattern on glottal source excitation," Biomedical Signal 

Processing and Control, vol. 31, pp. 156-164, 2017/01/01/ 2017. 

[7] D. Martínez, E. Lleida, A. Ortega, A. Miguel, and J. Villalba, 

"Voice Pathology Detection on the Saarbrücken Voice Database 
with Calibration and Fusion of Scores Using MultiFocal Toolkit," 

in Advances in Speech and Language Technologies for Iberian 

Languages: IberSPEECH 2012 Conference, Madrid, Spain, 

November 21-23, 2012. Proceedings, D. Torre Toledano et al., 

Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 
99-109. 

[8] O. Abdel-Hamid, A. r. Mohamed, H. Jiang, L. Deng, G. Penn, and 

D. Yu, "Convolutional Neural Networks for Speech Recognition," 

IEEE/ACM Transactions on Audio, Speech, and Language 

Processing, vol. 22, no. 10, pp. 1533-1545, 2014. 
[9] G. Hinton et al., "Deep Neural Networks for Acoustic Modeling 

in Speech Recognition: The Shared Views of Four Research 

Groups," IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 

82-97, 2012. 

[10] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, "Convolutional 
deep belief networks for scalable unsupervised learning of 

hierarchical representations," presented at the Proceedings of the 

26th Annual International Conference on Machine Learning, 

Montreal, Quebec, Canada, 2009.  

[11] J. Shi et al., "ZhuSuan: A Library for Bayesian Deep Learning," 
arXiv preprint arXiv:1709.05870, 2017. 

[12] M. Abadi et al., "Tensorflow: Large-scale machine learning on 

heterogeneous distributed systems," arXiv preprint 

arXiv:1603.04467, 2016. 

449



[13] D. P. Kingma and J. Ba, "Adam: A method for stochastic 

optimization," arXiv preprint arXiv:1412.6980, 2014. 

 

450


