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Abstract

This  paper  presents  a  multiclass  classification  of  correction 
dialog  turns  using  machine  learning.  The  classes  are 
determined by the type of the introduced recognition errors 
while  performing  WOz  trials  and  creating  the  multilingual 
corpus.  Three datasets were obtained using different sets of 
acoustic-prosodic  features  on  the  multilingual  dialogue 
corpus.

The classification experiments were done using different 
machine learning paradigms: Decision Trees, Support Vector 
Machines and Deep Learning. After careful experiments setup 
and optimization on the hyper-parameter space, the obtained 
classification results were analyzed and compared in the terms 
of  accuracy,  precision,  recall  and  F1  score.  The  achieved 
results  are  comparable  with  those  obtained  in  similar 
experiments on different tasks and speech databases.

Index  Terms: multiclass  classification,  machine  learning, 
multilingual dialogue corpus

1. Introduction

In  Spoken  Dialog  Systems  (SDS),  Automatic  Speech 
Recognition  (ASR)  and  Natural  Language  Understanding 
(NLU)  are  challenging  tasks  and  errors  are  still  ultimately 
unavoidable. In reality, there is no ideal speech interface and 
problems  in human-computer  conversation  mostly  arise  in 
cases  of  miscommunication between  the  interacting  sides, 
regardless  the  cause:  miss-  or  non-recognition  (ASR), 
misunderstanding (NLU), inappropriate  prompting or wrong 
dialog context (Dialog Manager-DM). Therefore, it is of great 
importance  to  implement  an  appropriate  recovery  and error 
handling  strategy,  as  close  as  possible  to  the  way  humans 
would  react  in  such  situations.  This  is  only  possible  if  the 
system  is  capable  of  being  aware  of  problematic 
communication.

Many  research  groups  are  dealing  with  the  topic  of 
prediction,  detection  and reduction of  miscommunication  in 
Spoken Dialog Systems. In [1], the data-driven approach for 
detecting  instances  of  miscommunication  is  described. 
Handcrafted  rule-based  methods  are  presented  in  [2-3], 
Bayesian networks were used in [4-5], discriminative models 
in [6], and Long Short-Term Memory Neural Networks in [7]. 

The authors in [8] proposed a system which integrates an 
error  correction  detection  module  with  a  modified  dialogue 
strategy.  In  the  study  [9],  a  machine-learning  approach 
employed automatically derived prosodic features, the speech 
recognition process, experimental conditions and the dialogue 
history  to  identify  user  corrections  of  speech  recognition 
errors.  An  error  handling  strategy  based  on  dynamically 
created  correction  grammars  for  recognizing  correction 
sentences  is  described  in  [10].  Other  research  studies  used 

different sources of information to detect problematic turns, in 
[11] the authors used information from the language model to 
train  an  ANN  that  detected  mis-recognized  words  and 
out-of-scope  phrases,  while  in  [12],  the  authors  combined 
information  from  the  speech  recognizer,  parser,  and  the 
dialogue manager. 

The  speaking  style  changes  associated  with  correction 
dialogue acts are characterized by distinctive prosodic features 
mostly  correlated  with  hyperarticulated  speech.  Thus, 
hyperarticulation  can be used as a clue in  order  to  identify 
problematic turns. Using prosodic features for recognizing and 
classifying dialogue acts was investigated in [13]. In [14] the 
duration, pause, and pitch features were employed to train a 
decision  tree  classifier,  which  was  extended  and  integrated 
with recognizer confidence scores for further improvements in 
the detection of corrections [15]. 

The authors  in [16] observed that  human speech during 
error resolutions shifts to become lengthier and more clearly 
articulated.  A  similar  study  presented  in  [17]  shows  that 
English speaker’s utterances of correction and non-correction 
dialogue  acts  differ  prosodically  in  ways  consistent  with 
hyperarticulated  speech.  They  defined  it  as:  “slower  and 
louder speech with wider pitch excursion and more internal 
silence”,  similar  findings  were reported  for  German speech 
data in [18]. Hyperarticulation detection is a challenging task 
for  the  humans  and  for  the  computers.  The  users  have 
different speaking styles which make it challenging to actually 
see that they are hyperarticulating.  Classification of a single 
utterance  regardless  the  previous  one  could  lead  to  poor 
classification  performance.  The studies  [19]  and [20]  avoid 
the  problem  by  considering  a  pair  of  the  user  utterances 
spoken in sequence. 

In  our  previous  work  [21],  cross-linguistic  differences 
related to hyperarticulated speech in correction dialogue acts 
were investigated. It was confirmed that there are distinctive 
prosodic features across 9 different languages associated with 
hyperarticulated speech. In general, the speakers raised their 
voice  (pitch  and  intensity)  in  the  case  of  reacting  on  the 
request to repeat the last utterance (deletions) but they did the 
opposite  in  the  case  of  insertions,  mostly  confused  by  the 
sudden and unexpected system confirmation. The speech rate 
(including  the  pauses  and  hesitations)  was  slower  in 
misrecognition clarifications (substitutions).

While  there  are  many studies  successfully  dealing  with 
automatic  detection  of  correction  dialog acts,  very few like 
[9], attempt to classifying them in more elementary categories 
according  the  cause  (non-recognition,  non-understanding, 
misunderstanding, etc). The aim of this paper is to investigate 
the  possibility  of  analysis  and  classification  of  correction 
dialogue  acts  in  multilingual  corpus,  further  than  detecting 
presence-absence  of  distinctive  prosody  features  indicating 
miscommunications. 
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2. Material and methodology

2.1. Speech database

For the experiments, we used the speech database, collected in 
WOz  tests  involving  participants  of  13  different  languages 
interacting  with  a  smart-home  system  [22].  Such  parallel 
multilingual corpus is a solid basis to perform investigations 
on  the  behavioral  patterns  of  native  speakers,  from  the 
linguistic as well as para-linguistic aspects.

The  speech  database  consist  of  approximately  4500 
orthographically transcribed scenarios with a total duration of 
125  hours.  The  following  languages  were  covered 
(abbreviation and number of participants in brackets): English 
(EN:40), German (DE:40), French (FR:23), Spanish (ES:27), 
Italian  (IT:19),  Dutch  (NL:15),  Finnish  (FI:7),  Norwegian 
(NO:7),  Swedish  (SE:6),  Danish  (DA:8),  Russian  (RU:20), 
Turkish (TR:20) and Mandarin Chinese (CN:19). During the 
sessions, the wizard triggered spoken dialogue acts and device 
functions  to  simulate  a  perfect  dialogue  system. 
Miscommunication  was simulated  by introducing embedded 
error speech prompts, categorized as: 

• Substitutions: wrongly recognized parameters;

• Insertions: confirmation of non-uttered sentence;

• Deletions: request to repeat the last sentence.

The maximum number of introduced errors (around 20%) 
in a session was estimated over the number of the required 
parameters  (options,  entries)  per  scenario,  including 
occasional  system rejections and repetitions.  They were not 
triggered automatically and not all the planned error prompts 
are  played  since  the  actual  dialogue  flow  never  reached 
intended states. 

The total  distribution of the paired dialogue turns on all 
languages is: deletions 35.20% (1182), insertions 8.04% (270) 
and  substitutions  56.76%  (1906).  Figure  1  presents  the 
introduced  error  distribution  across  languages.  For  some 
languages,  there  are  differences  in  the  count  of  insertions 
errors,  because  often  the  speakers  were  quite  confused 
providing no answer that could be paired with the statement.

Figure 1: Distribution of the Introduced Errors

2.2. Data organization

Common datasets were compiled for all languages, based on 
the collected corpus and the time-stamped logs of the dialogue 
acts.  We  selected  pair  of  utterances  of “statement”  and 
“correction” dialogue turns (in total  3026). The dataset was 
divided by randomly sampling into a training (80% or 2686 
observations) and a test set (20% or 672 observations). 

It has to be emphasized that the collected speech for the  
correction turns were only transcribed by orthography and not 
evaluated by any other speech characteristic. That means there 
are  no  annotations  describing  presence  of  hyperarticulated 

speech.  This  makes  the  problem  of  classifying  the  dialog 
correction acts into subcategories even more challenging and 
the  performance  probably  will  not  reach those achieved  on 
different databases.

2.3. Acoustic-prosodic features

We employed 3 different acoustic-prosodic feature extraction 
procedures  for  the  paired  turns.  The  methods  produced 
features  values  for  the  “statement”  turns,  which  were 
subtracted from those of the corresponding “correction” turns, 
producing  datasets  representing  quantitative  changes  in 
acoustic-prosodic features over the complete sentence. 

Such delta values are considered better suited for analysis, 
compensating  speaker  and  environment  specific  influences 
[20].  Statistical  analysis presented in [21] showed that, after 
Shapiro Wilk normality test on the delta features of the VIC 
dataset,  regardless of the language, they are not represented 
with a normal distribution, as is usually true for a large sample 
count real data. 

Non-parametric  Wilcoxon  test  applied  to  all  the  delta 
values confirmed the presence of distinctive prosodic features, 
particularly  related  to  slower  speech,  indicating 
hyperarticulation.

2.3.1. VIC features

The first, noted as  VIC in the following text was built using 
the following Praat [23] scripts.

“Praat  Script  Syllable  Nuclei  v2” [24]  was  used  for 
automatic detection of syllable nuclei in order to estimate the 
speech rate without the need of manual transcription. Peaks in 
intensity  (dB)  that  are  preceded  and  followed  by  dips  in 
intensity are considered as potential syllable nuclei, while the 
peaks  that  are  not  voiced  were  discarded.  The  following 
measures  were  considered:  speech  rate  (nsyll/speech-
duration), articulation rate (nsyll/phonation-time) and average 
syllable  duration  (phonation-time/nsyll).  Where  nsyll is  the 
number  of  syllables  detected  in  either  speech  duration  or 
phonation time. 

“ProsodyPro 6beta” [25] was used for systematic analysis 
of  the  datasets  to  generate  detailed  discrete  prosodic 
measurements  suitable  for  statistical  analysis:  maximal  f0 
(Hz), minimal  f0 (Hz), pitch excursion (semitones), averaged 
f0 (Hz),  averaged  intensity  (dB)  and  maximum  f0 velocity 
(semitone/s).

2.3.2. IS09 emotion features

In addition to VIC features, we used the standard feature set  
designed for emotion recognition: the Interspeech 2009 (IS09) 
emotion  challenge  feature  set.  It  contains  384  features 
extracted  from  open  source  feature  extraction  toolkit 
openSMILE [26]. The influence of emotion on the articulation 
degree has been studied in  [27], which give us the idea that 
the IS09 emotion feature set could be useful for analysis of 
hyperarticulated speech.

2.3.3. IS13 ComParE features

Apart from the smaller set, we employed also features which 
were  used  as  a  baseline  in  the  Interspeech  2013  (IS13) 
ComParE  Challenge  [28].  The  set  contains  6373  features 
derived by processing of low-level descriptor (LLD) contours 
extracted  by  openSMILE.  The  LLD  features  include  pitch 
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(fundamental frequency), intensity (energy), spectral, cepstral 
(MFCC),  duration,  voice  quality  (jitter,  shimmer,  and 
harmonics-to-noise  ratio),  spectral  harmonicity,  and 
psychoacoustic spectral sharpness. 

This standard feature set  has been successfully used for 
many  computational  paralinguistic  tasks,  including  emotion 
recognition, native language detection, sincerity, etc.

3. Experiments and results

3.1. Experiments setup

In the experiments,  we considered the detection of different 
types of correction turns with present hyperarticulated speech 
as a multiclass  classification problem. The objective was to 
find out which approach for non-linear classification is best 
suited for the datasets. The datasets are characterized by small 
number of unbalanced classes and small  amount  of training 
data per class. In all of the experiments, we are using the R 
package for statistical computing [29].

The  choice  of  an  appropriate  classification  approach 
depends  by  a  number  of  factors.  In  this  case,  particularly 
important  are  the:  1)  tolerance  of  high  dimensionality,  
2) capability of exploiting a small dataset, and 3) handling of 
unbalanced classes. 

At  first,  we  performed  non-linear  classification  with 
Decision  Trees (DT)  which  were  successfully  applied  in 
similar investigations [30]. Then, Random Forests (RF) [31], 
an approach based on decision trees, which has been proved 
successful in experiments using similar data [32]. 

Followed  by  commonly  used  Support  Vector  Machine 
(SVM) classification which seems well  suited when applied 
on the OpenSMILE derived acoustic-prosodic features. 

At  the  end,  we  assessed  the  usability  of  Deep  Neural 
Networks  (DNN)  in  comparison  with  the  other  methods, 
considering  the  limitations  of  a  rather  small  number  of 
observations,  inconsistent  data  set  and  a  large  feature 
dimensions.

3.2. Classification methodology

In  the  classification  tests  with  Decision  Trees,  the  class 
weights or prior probability were applied correspondingly to 
overcome  the  problem  of  unbalanced  datasets.  For  all 
experiments,  we  used  5-fold  Cross  Validation  (CV)  on  the 
train set and measured the mean and the standard deviation on 
the original test set across the folds for unweighted: accuracy, 
precision, recall and F1 score. To ensure the repeatability of 
the experiments,  we kept the same division for the training 
and test set, as well as the validation folds.

The variable importance, ranked by the mean decrease in 
Gini coefficients was also investigated. For the VIC dataset, 
the  most  important  factors  correspond  with  the  significant 
ones found by Linear Mixed Model analysis in [20]. However, 
there  was no large difference in the mean decrease in Gini 
coefficients in order to achieve any improvements by omitting 
some of the factors. We assumed that larger feature sets could 
benefit  from  excluding  most  of  the  factors  which  are  not 
significant predictors. By investigating the slope of the mean 
decrease  in  Gini  coefficient  function  we  choose  the 
approximate cut-off points by looking for a larger difference 
between the factors. 

There is the risk of having either too few variables (which 
could not provide proper separation) or too many (which will 
over-explain the differences). For the IS09 dataset, the feature 
dimension was reduced from 384 to 46 and for the IS13 set 
from 6373 to 383 variables.

3.2.1. Decision Trees

We assumed linear dependencies in the data set, consecutively 
we  employed  Recursive  Partitioning  (RP)  decision  trees  to 
build the first classification model. The trees were pruned to 
the optimal value of the complexity parameter. 

For the second, Random Forest (RF) model, we explored 
different  values  for  the  number  of  trees  (ranged  from 2 to 
512),  as  well  as  the  maximum  number  for  nodes  (100  to 
1400). It was observed, that for all datasets after increasing the 
number of trees as well the number of nodes, the classification 
performance  on the  test  set  did not  increased  further.  That 
indicates over-fitting of the model, as pointed out also in [33].

3.2.2. Support Vector Machines

Although originally developed for binary classification, SVMs 
[34] are widely used also in multiclass recognition tasks. In 
order to achieve acceptable  results,  correct  choice of kernel  
parameters is very important. Before the results can be trusted, 
an extensive search has be conducted on the hyper-parameter 
ranges to find the most optimal values. 

To train our SVMs, we took advantage of the R interface 
to the well known LIBSVM library [35]. The Radial Kernel 
Function  (RBF)  was  chosen  because  of  its  good  general 
performance and the SVM was tuned over a range of the cost 
(10-4 to 101) and the gamma (10-9 to 101) parameters. 

3.2.3. Deep learning models

In this section, the usability of Deep Learning paradigm for 
classification of correction turns was explored. DNN models 
(Multi-Layer  Perceptron)  were  trained  over  the  feature  sets 
used  in  the  previous  experiments.  The  same  sequence  of 
experiments  is  performed on the  “Full”  and the  “Selected” 
features.  The R interface  to  Keras  [36],  the neural  network 
API was employed, with the Tensorflow [37], as the back-end. 

A grid  search  was  performed  over  the  hyper-parameter 
space, to get the most optimal values for the number of layers 
and nodes per layer. The dropout ratio was chosen to 0.495 in 
order  to  reduce  the  risk  of  over-fitting  [30],  which  is 
emphasized in the case of a small amount of data and a larger 
number of features. The topology consisted of fully connected 
layers  with  equal  number  of  hidden  units  and  the  ReLU 
activation function.  The output layer has softmax activation 
and  three  output  nodes  corresponding  to  the  target  classes. 
During training, the categorical cross-entropy was used as a 
loss function, the output of each layer was normalized  using 
batch normalization and passed through a dropout layer. 

The  models  were  trained  using  Adam  [38]  stochastic 
optimization which is well  suited for tasks that  are large in 
terms of data and/or parameters. The learning rate was set to 
10-4 and the decay rate to 10-6 with batch size of 128. 

The maximum number of epochs was set to 50 with the 
condition of 10 epochs with no improvement after which the 
training was stopped. 
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4. Discussion

Figure 2 presents the achieved results in terms of unweighted 
accuracy  (UAR)  and  F1  score,  along  with  the  standard 
deviation, for the all three datasets with the original number of 
features (the “Full” datasets). 

Figure 2. UAR and F1 for the “Full” datasets

Figure 3 shows the comparison of the F1 score between 
the datasets with “Full” and the “Selected” features. 

Figure 3. F1 score of “Full” and “Selected” datasets

Since the classes in the datasets are unbalanced, Weighted 
Guess  Classifier  was  used  as  a  baseline,  with  calculated 
accuracy of 0.452. 

The OpenSMILE feature sets IS09 and IS13 provided in 
most  of  the cases  better  classification.  The best  performing 
model  achieved an  accuracy  of  0.689 ± 0.015,  precision 
0.643 ± 0.018,  recall  0.661 ± 0.024  and  the  F1  score  of 
0.649 ± 0.013 and it used SVM training with “Selected” IS13 
dataset.  The VIC dataset has the smallest number of features 
and that was the reason of worse performance in comparison 
with the other two. The best DNN model yielded an F1 score 
of 0.469 on the IS09 openSMILE “Full” dataset. All models 
provided results  well  above those of the baseline classifier,  
with the maximum improvement of 31.6%.

It  is  obvious  from  the  results  that  the  Deep  Learning 
approach did not fulfill the expectations, the models could not 
reach the classification performance of the decision trees and 
SVM classifiers. The reasons are the relatively small amount 
of available data,  in contrast  with large number of features, 
the  unbalanced  class  distribution  and  the  non-consistent 
content of the classes. Namely, the classes were determined 
during the WOz experiments by introducing different types of 

errors  (deletions,  insertions  and  substitutions)  and  not  by 
human annotations of the dialogue turns. 

In general, the machine learning algorithms benefit from 
more  features  and  selection  of  better  predictors.  This  was 
confirmed after reducing variables to the most important ones, 
according the Gini index, where on the IS09 and IS13 datasets 
this provided improvements in classification results with SVM 
models. The multilingual nature of the data and the different 
speakers were not an influencing factor because the analysis 
was done on a pairwise dialog turns. 

If  we  omit  the  insertion  error  class  as  the  most 
inconsistent, the task is transformed to a binary classification 
problem. Then the best performing DNN topology trained on 
the  IS09  “Full”  dataset  achieved:  accuracy  0.630 ± 0.034, 
precision  0.620 ± 0.040,  recall  0.617 ± 0.039,  and  F1 
0.617 ± 0.038.  This  is  improvement  in  accuracy  of  10.9% 
compared  for  to  the  corresponding  baseline  classifier.  The 
results are also comparable to those obtained in similar studies 
in case of binary classification [30]. 

The  classification  accuracy  could  be  improved  by 
re-annotating the correction turns of the multilingual corpora 
by  human  experts.  That  is,  in  general,  challenging  and 
difficult  task  since  subtle  differences  in  acoustic-prosodic 
characteristics  should  be  observed  and  there  would  be 
substantial disagreement between the human annotators. 

5. Conclusions

In  this  paper,  we  tackled  the  problem  of  multiclass 
classification  of  correction  dialog  turns  exploiting 
acoustic-prosody features and machine learning. Many similar 
studies  are  dealing  with  classification  of  para-linguistic 
aspects in dialog turns, most of them as binary classification 
tasks, except in the cases, where adequate amount of data is 
available.  The  target  classes  in  our  experiments  were 
determined  during  acquisition  of  the  multilingual  dialog 
corpus in WOz sessions, by the type of the introduced errors 
(deletions,  substitutions and insertions).  Three datasets were 
obtained  from  the  corpus  using  different  sets  of 
acoustic-prosodic  features,  named  as  VIC,  and  the 
OpenSMILE IS09 and IS13.

For  the  classification  experiments,  Decision  Trees, 
Support  Vector  Machines  and  Deep  Learning  machine 
learning  paradigms  were  used.  The  achieved  results  were 
analyzed  and  compared  in  terms  of  unweighted  accuracy, 
precision, recall and F1 score. The best performing model is 
based  on  the  SVM approach  and  used the  “Selected”  IS13 
OpenSMILE  dataset.  DNN  models  did  not  perform  well 
enough  on  any  of  the  datasets  due  to  the  relatively  small 
amount of observations and larger number of features. When 
the task was reformulated as binary classification (deletions 
and  substitutions  errors)  the  DNN  model  provided  results 
comparable  with  those  obtained  in  similar  tasks  and  on 
different speech databases. 

In  the  future,  we  plan  to  re-evaluate  the  presented 
approaches  on  the  multilingual  corpus  after  improving  the 
annotations  regarding  the  target  classes  in  the  same  time 
expecting improvements in classification performance. 
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