
Efficient language model adaptation with Noise Contrastive Estimation and
Kullback-Leibler regularization

Jesús Andrés-Ferrer1, Nathan Bodenstab1, Paul Vozila1

1Nuance Communications
name@nuance.com

name ∈ {jesusandres.ferrer, nathan.bodenstab, paul.vozila}

Abstract
Many language modeling (LM) tasks have limited in-domain
data for training. Exploiting out-of-domain data while retaining
the relevant in-domain statistics is a desired property in these
scenarios. Kullback-Leibler Divergence (KLD) regularization
is a popular method for acoustic model (AM) adaptation. KLD
regularization assumes that the last layer is a softmax that fully
activates the targets of both in-domain and out-of-domain mod-
els. Unfortunately, this softmax activation is computationally
prohibitive for language modeling where the number of out-
put classes is large, typically 50k to 100K, but may even ex-
ceed 800k in some cases. The computational bottleneck of
the softmax during LM training can be reduced by an order
of magnitude using techniques such as noise contrastive esti-
mation (NCE), which replaces the cross-entropy loss function
with a binary classification problem between the target output
and random noise samples. In this work we combine NCE and
KLD regularization and offer a fast domain adaptation method
for LM training, while also retaining important attributes of the
original NCE, such as self-normalization. We show on a medi-
cal domain-adaptation task that our method improves perplexity
by 10.1 % relative to a strong LSTM baseline.
Index Terms: speech recognition, NCE, KLD, language mod-
eling, adaptation

1. Introduction
Neural Networks (NN) have become standard in language mod-
eling. Such NN models range from feed-forward models [1] to
vanilla recurrent models [2] to long short-term memory mod-
els [3], or even convolutional models [4]. Initially, the majority
of computation to train these models was spent during the soft-
max computation at the output layer. This computation required
a time proportional to the vocabulary size times the last hidden
layer size.

Several methods have been proposed in the literature to re-
duce the computational requirements of the output layer, such
as output short-lists [1], importance weight sampling [5, 6],
and noise contrastive estimation (NCE) [7, 8, 9]. NCE stands
out from other methods because of two important properties: it
yields a self-normalized model; and only a small and constant1

number of output nodes need to be computed during training.
Compared to cross-entropy training with a softmax output layer,
NCE reduces the training time by up to an order of magnitude,
depending on the output layer size [9]. During decoding, an
NCE-trained model is self-normalized and only requires query-
ing a few words per LM lookup, in contrast to the entire vocab-
ulary. At least one work [10] has claimed that NCE is worse

1Actually, the sample size is contant and the number of active output
nodes is less than or equal the sample size + 1 depending on whether
there are sampling collisions

than other methods such as importance softmax sampling, but
recent research proves this is not the case if the noise distribu-
tion is correctly selected [11] and hyper-parameters are properly
tuned [12].

In tasks such as domain adaptation or teacher distilla-
tion [13], we wish to train an in-domain model that remains
’close’2 to another general, out-of-domain model. A successful
technique to achieve this goal is to add a Kullback-Leibler diver-
gence (KLD) regularization term to the standard maximum like-
lihood estimation (or cross-entropy loss). This has been applied
to several tasks such as image recognition [13], user adaptation
for automatic speech recognition [14], and machine translation
for reducing the left-to-right error bias [15].

In the case of LM, it is not straight-forward to apply KLD
regularization together with the NCE loss function. Of course
we could apply KLD regularization to the traditional cross-
entropy loss function, but as discussed above, this comes with
the unfortunate extra cost of computing the softmax, which will
increase both training and decoding times. To the best of our
knowledge, there is no loss function for neural network do-
main adaptation with KLD that also retains the efficiency prop-
erties of NCE. In this work, we extend NCE loss to include a
KLD regularization term that keeps the trained model parame-
ters close to a second (reference) model. We do this by reusing
the noise samples generated during NCE training and adapting
them via importance sampling [16], as well as explicitly com-
puting part of the KLD expectation. This modifies the NCE data
distribution to include the KLD regularization term with a com-
putational cost similar to that of NCE training and also yields a
self-normalized model.

In sections 2 and 3 we review KLD regularization and NCE
to build the foundation of our approach. The NCE loss func-
tion together with KLD regularization is introduced in section 4,
where we also show how to approximate such loss efficiently.
Finally, in section 5, we validate our technique experimentally
on an internal task. We conclude in the following section by
proposing some future research directions.

2. Kullback-Leibler regularisation
Cross-entropy is the standard training loss used for multiclass
output neural network models. For a given context h, the cross-
entropy is defined as follows,

LXE(h) = −Epd [log pθ(w|h)] (1)

where pθ(w|h) is a model with parameters θ, and pd(w|h) is
the data distribution we want to learn as well as the probabilty
over which the expecation is taken. In practice, since we have

2In the sense of having similar output distributions.

Interspeech 2018
2-6 September 2018, Hyderabad

3368 10.21437/Interspeech.2018-1345

http://www.isca-speech.org/archive/Interspeech_2018/abstracts/1345.html

a sample T = {(yn, hn)}Nn=1, the data distribution is approxi-
mated by

pd(w|h) ≈
{
1 if (w, h) ∈ T

0 otherwise
(2)

Note that we use w for refering to either a generic next word or
the random variable, and yn (or y) for denoting the specific next
word that follows a specific training data context hn (or h).

Finally, for a given training example from the sample T ,
say (yn, hn), the cross-entropy loss is simplified to

LXE(hn) = −
∑

w

pd(w|hn) log pθ(w|hn) = − log pθ(yn|hn)

(3)
Since the sample data distribution is 1-hot vectors (or hard tar-
gets), the expectation over the vocabulary is approximated with
a single word and it would not be necessary to activate the entire
output layer if the softmax did not involve the computation of
the partition function.

For a given LM context h, the KL divergence is defined as

DKL(h) := −Ept [log
pθ(w|h)
pt(w|h)] (4)

where pt(w|h) is a generic distribution we want our trained
model pθ(w|h) to be close to. In general, we are interested
in learning the parameters, θ, and pt is considered to be known.
In this case, the regularization term simplifies to

RKL(h) = −Ept [log pθ(w|h)] (5)

where the entropy of pt is dropped since it does not depend on θ.
In contrast to cross entropy in Eq. (3), this expectation requires
computing the full expectation over all words in the vocabulary,
which implies fully activating the output layer even if our NN
is self-normalized and does not require computing the partition
function.

The KLD regularized cross entropy takes this final form

Lt(h) = γLXE(h) + (1− γ)RKL(h) (6)

Since both LXE(h) and RKL(h) are expectations over the same
distribution, it is equivalent to the following formulation [14]

Lt(h) = −Epγ [log pθ(w|h)] (7)

with pγ defined as follows

pγ(w|h) = γpd(w|h) + (1− γ)pt(w|h) (8)

KLD regularization is helpful when the trained model needs
to be close to a reference model, while also extracting relevant
information from the data distribution. This is helpful in scenar-
ios such as low-data user adaptation [14], distilling an ensemble
of models to a single model [13, 17, 18], or distilling a larger
model to a smaller model [13, 18]. In the latter case, a temper-
ature parameter is typically used at the output softmax logits to
smooth the distribution [13].

3. Noise Contrastive Estimation (NCE)
Noise contrastive estimation (NCE) [7, 9, 10, 11, 12] restates
maximum likelihood estimation for parameter inference as a
binary classification problem. This binary classification prob-
lem separates the data distribution, pd, from the so-called noise
distribution. We approximate pd by the model, pθ(w|h), and

denote the noise distribution as pn(w|h). Specifically, NCE
minimizes the following loss

LN(h)=−[Epd [log p(C=1|w, h)]+νEpn [log p(C=0|w, h)]]
(9)

where p(C = 1|w, h) is the probability of w to come from
the model distribution versus p(C = 0|w, h) , which is the
probability of w to come from the noise distribution. The term
ν = p(C=0)

p(C=1)
is the prior ratio of noise words to data words.

Specifically, p(C = 1|w, h) is defined as follows

p(C = 1|w, h) =
pθ(w|h)

pθ(w|h) + νpn(w|h) (10)

and p(C = 0|w, h) is the contrary event 1− p(C = 1|w, h) or

p(C = 0|w, h) =
νpn(w|h)

pθ(w|h) + νpn(w|h) (11)

In practice, pd is approximated as in Eq. (2) and the positive
expectation (left expectation) in Eq. (9) is reduced to a single
word, the target word, yn, for its context pair, hn. The noise ex-
pectation (or right expectation) in Eq. (9), is approximated with
a sample of S negative words, Sn = S(hn) = {w1, . . . , wS},
sampled according to the noise distribution pn. Taking these
considerations into account, Eq. (9) is approximated as follows

LN(hn)=−[log p(C = 1|yn, hn)+
∑

w∈Sn

log p(C = 0|w, hn)]

(12)
The model pθ converges to the data distribution pd when the

NCE loss is minimized [7]. The convergence speed depends on
many factors, one of them being the noise distribution used [7].
In practice, a good balance between convergence speed and cost
per epoch is obtained using a power of the unigram [8, 11],

pn(w|h) := pn(w) ∝ [C(w)]α (13)

where C(w) is the unigram count of w and α is a value in [0, 1].
In addition to converging to the data distribution, NCE has

another desirable property for LM tasks: self-normalization.
It has been found that models trained with NCE loss are self-
normalized [7, 8, 9, 11], implying that the model does not need
to dynamically compute the normalization constant for each
context, in contrast to the softmax activation. Simply using

pθ(w|h) = exp([o(h)]w − Z) (14)

with a constant value Z, generates a normalized model. The
normalization constant, Z, can be zero, but using a value close
to the logarithm of the vocabulary size speeds-up convergence

4. NCE with KLD regularization
In this section, we explain how KLD regularization is added to
the NCE loss function. The key idea is to notice that Eq. (6)
is equivalent to Eq. (7) when using the distribution pγ from
Eq. (8). We can then substitute the pd distribution of Eq. (9)
with the pγ distribution from Eq. (8). The combined NCE with
KLD regularization loss function then becomes

LD(h)=−[Epγ [log p(C=1|w,h)]+νEpn [log p(C=0|w, h)]]
(15)

It is straightforward to prove that this loss is minimized when
the model, pθ, is equal to pγ since it is an instantiation of

3369

NCE [7], and therefore it will also produce a self-normalized
model.

A naı̈ve implementation of Eq. (15) requires the computa-
tion of log p(C=1|w, h) for all words in the vocabulary, which
would suffer from the same speed issues as the cross-entropy
with softmax activation layer.

Similar to standard NCE, we approximate the noise expec-
tation with a sample of S negative words, Sn , sampled accord-
ingly to the noise distribution pn as follows

νEpn [log p(C=0|w,hn)]] ≈
∑

w∈Sn

log p(C = 0|w, hn)] (16)

In order to maximize efficiency, we would like to reuse
this noise sample to approximate the positive expectation of
Eq. (15). We could directly apply importance sampling [16]
to approximate the positive expectation (left expectation), how-
ever, this approach would rely on the noise distribution to ran-
domly pick the target word yn. This is clearly undesirable as the
loss would not approach NCE loss as γ tends to 1. For instance,
if we consider the extreme case when γ=1, then approximat-
ing the positive expectation with the noise sample directly by
importance sampling will not recover the NCE loss.

Instead, we use importance sampling to only approximate
what we termed the partial expectation, which is obtained by
removing the target word contribution (yn) from the full expec-
tation. We first decompose the expectation given the training
pair (yn, hn) as follows

Epγ [f1(w, hn)] = pγ(yn|hn)f1(w, hn) + E\yn
pγ [f1(w, , hn)]

with f1(w, hn) = log p(C = 1|w, hn) for compactness, and
where the partial expectation E

\yn
pγ [f1(w, hn)] is defined as fol-

lows

E\yn
pγ [f1(w, hn)] =

∑

w∈W−{yn}
pγ(w|hn)f1(w, hn) (17)

The partial expectation is approximated by importance sam-
pling (IS) reusing the NCE noise sample Sn as follows

E\yn
pγ [f1(w, hn)]≈ 1

S\yn · Z(hn,Sn)

∑

w∈Sn−{y}
α(w|hn)f1(w, hn)

(18)
where S\yn = S − N(yn ∈ Sn) is the number of valid ele-
ments in the noise sample, and α(w|hn) is the IS weight defined
as

α(w|hn) =
pγ(w|hn)

pn(w|hn)
(19)

Finally, Z(hn,S) is the normalization constant for non-
normalized reference models, pt. It can be approximated con-
sidering the partial expectation as follows

Z(hn,S) = pγ(yn|hn) +
1

S\yn ·
∑

w∈S−{yn}
α(w|hn) (20)

Note that if pt is a normalized model, then this term equals 1.
Finally, Eq. (15) is approximated as follows

LD(hn) = pγ(yn|hn) log p(C = 1|w, hn)

+
1

S\yn
1

Z(hn,Sn)

∑

w∈Sn−{yn}
α(w|hn) log p(C = 1|w, hn)

+
∑

w∈Sn

log p(C = 0|w, hn)]

(21)

Table 1: Statistics of Gastroenterology (in-domain) train, devel-
opment, and test sets

Set Running words OOV (%)

train 265 989 391 0.0
dev 37 509 0.37
test 33 809 0.78

Table 2: Statistics of training data.

Set Running words (millions)

ID 266.0
OOD 1 211.4

OOD+ID 1 477.4

Similar to distillation [13], we could also apply a tempera-
ture to the self-normalized model

pθ(w|h) = exp(ot(w; θ)/T) (22)

However, unlike softmax and KLD for distillation, the tem-
perature parameter here does not cause the student model to
approach the L2-loss of the logits for large temperatures [13].
Moreover, the resulting model will only be self-normalized in
some cases; specifically, if both the pt and pθ models follow
Eq. (22), and T is 1 (no temperature), or γ is 0 (no hard-targets).
Finally, since there is no softmax activation, the temperature pa-
rameter does not smooth the distribution.

5. Experiments
In this section, we evaluate the proposed adaptation technique
on an internal medical task by adapting from a general medical
LM to a domain-specific LM. We choose Gastroenterology as
the target domain, and partition our Gastroenterology data into
three sets: train, development, and test. Per usual, we optimize
hyperparameters on the development set and report test set per-
plexities. Table 1 contains a summary of the data sets statistics.

The general medical model is trained from 1.2 billion words
sampled from all medical domains excluding the in-domain
(Gastroenterology) specialty. We will refer to this corpus as the
out-of-domain (OOD) corpus. The in-domain corpus (ID) is
composed of 266.0 million words sampled from the in-domain
medical specialty. Finally, we generate an additional corpus by
adding the ID data to the end of the OOD data set, and refer to
this corpus as the OOD+ID corpus. We add the ID data to the
end so that during training, the model sees this in-domain data
last as a mild type of adaptation. Table 2 contains a summary of
the training data.

We train an LSTM [19] model with a vocabulary size of
58,116 words including an unknown word for out of the vo-
cabulary tokens. The embedding size is 512 and contains two
LSTM layers of 1, 024 nodes each. In total, the models each
have 103.95 millions of parameters. During training we apply
0.25 feed-forward drop-out [20] and a small weight-decay of
10−6. We train all models with either NCE or NCE with KLD
regularization. In both cases, we found the noise distribution
of Eq.(13) with α = 0.75 to be beneficial. The norm of the
gradients is clipped to 15.0 and we train using truncated back-
propagation through time (BPTT) [21] with a length of 20. We
batch 128 sequences in parallel and share the noise samples for

3370

Table 3: Perplexity results on the test set. All models are trained
with NCE loss. The KLD model is trained with KLD regulariza-
tion (γ=0.75). We compare normalized PPL so that results
are comparable, as well as relative perplexity improvements
(RPPL) with respect to the model trained on the OOD+ID data.

Model Init normalized PPL RPPL(%)

OOD+ID Random 10.9 n.a.
OOD Random 17.8 -62.3 %

ID Random 12.4 -13.7 %
Fine-Tune OOD+ID 10.3 5.5 %

KLD OOD+ID 9.8 10.1 %

the full batch. We optimize the number of noise samples to 256,
and keep this value constant for all experiments, with and with-
out KLD regularization. We train the models for 15 iterations
with a fixed learning rate and then anneal the learning rate by
half for 5 additional iterations as soon as the normalized peplex-
ity improvement on the held-out is reduced below 0.3% with a
maximum budget of 25 iterations.

We establish three baseline models: one trained only on
the out-of-domain (OOD) data; another trained only on the in-
domain data (ID); and a third trained on the OOD+ID data. For
all baseline models, we optimize the learning rate with a grid
search over the values {0.1, 0.2, 0.4, 0.8}, selecting the best
value according to development performance. In addition to the
above baselines, we train a Fine-Tune model that starts from
the OOD+ID model parameters and it is additionally trained on
just the ID data with a small learning rate until convergence. We
optimized the fine-tuning learning rate with a grid search over
values ({0.001, 0.005, 0.01, 0.05, 0.1, 0.2}) and found the best
value on the development set to be 0.05. All of the above mod-
els are trained with NCE loss as described in Eq. (12).

We train the last model with KLD regularization, and use
the same approach as for the fine-tuned model i.e. we bootstrap
from the model trained on the OOD+ID data and then run an-
other training round up to 25 epochs. The same range of learn-
ing rates is searched. For the γ parameter that balances between
KLD regularization and the data distribution, we optimize this
value on the development set as well, experimenting with values
{0.0, 0.5, 0.75, 0.9, 0.95}.

Every model we trained – including the KLD regularized
models –, has a similar logarithmic deviation on average from
a fully self-normalized model of approximately 0.10 (a fully
normalized model should have 0.0). We observe better self-
normalization for models that do not use drop-out (approxi-
mately 0.01), however, drop-out models performed best. The
variance is very small for all models and close to 0.01. Con-
sequently, models can be re-centered to have a smaller normal-
ization deviation, e.g. 0.02. This re-centering idea has been
previously discussed in the literature [12].

Results in Table 3 show that the OOD+ID is the best single
training recipe because it is performing a mild adaptation to the
ID data. We compute relative PPL improvements over this base-
line. Fine-tuning on in-domain data improves the perplexity at
the cost of an additional training round on the in-domain data.
Finally, adding KLD regularization to the fine-tuning round fur-
ther improves the model by 10.1% relative.

In Table 4 we observe how adding the regularization term
has a penalty of 20K words per second with respect to the NCE
training. This penalty is because in constrast to NCE without
KLD regularization where we only need to activate a single

Table 4: Processed words per second during training. NCE
needs to forward propagate a single model, while NCE with
KLD regularization needs to forward propagate 2 models.

Loss Words/sec (K)

NCE 75–71
NCE +KLD 55–53

Table 5: Perplexity results for NCE with KLD regularization.
The model is initialized with a model trained on OOD+ID data
and then fine-tuned with KLD regularization on the ID data.
We also report the relative perplexity improvement (RPPL) with
respect to the model trained on the OOD+ID data from Table 3.

γ normalized PPL RPPL

0.00 9.9 9.1 %
0.50 9.7 11.0 %
0.75 9.8 10.1 %
0.90 10.2 6.4 %
0.95 10.3 5.5 %
1.00 10.3 5.5 %

model, adding KLD regularization requires the reference (or
out-of-domain) model to be activated as well. Note, however,
that this cost is constant and independent of the output layer
size accordintly to the algorithm described in Section 4, and an
order of magnitude faster than softmax 3.

Table 5 reports PPL as a function of the interpolation weight
γ on the test set. Observe how the KLD term smoothly regular-
izes the model which converges to an NCE fine-tuned model
when γ equals 1.0. When γ=0, we see an unexpected gain as
well. We believe this is the result of the model being exposed
to only the ID data instead of the full OOD+ID data, as well
as the Monte Carlo approximation to the positive expectation of
Eq. (15). Note that the gradient of Eq. (21) will still generate a
learning signal even in this case, in contrast to a softmax model
with KLD regularization.

6. Conclusions
We have proposed an efficient technique to integrate KLD reg-
ularization directly with the NCE loss. The approach retains
the advantageous NCE property of yielding a self-normalized
model without the need to activate all outputs from either the
reference model or the model being trained. Our proposal
reuses the NCE noise sample for the partial expectation of the
interpolated distribution. We have applied the proposed tech-
nique to a medical domain-adaptation task, and improved per-
plexity by 10.1% relative with respect to a strong baseline.

We believe this technique will be beneficial in scenarios
were regularization is important and/or data is scarce. As future
work, we plan to adapt our method to ensembles and knowledge
distillation as well as to other tasks such as machine translation.

3We were not even able to train a softmax model on OOD(+ID),
because of hardware constraints

3371

7. References
[1] H. Schwenk, “Continuous space language models,” Computer

Speech and Language, vol. 21, no. 3, pp. 492–518, Jul. 2007.

[2] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudan-
pur, “Recurrent neural network based language model,” in IN-
TERSPEECH 2010, 11th Annual Conference of the International
Speech Communication Association, Makuhari, Chiba, Japan,
September 26-30, 2010, 2010, pp. 1045–1048.

[3] M. Sundermeyer, R. Schlüter, and H. Ney, “LSTM neural net-
works for language modeling,” in INTERSPEECH 2012, 13th An-
nual Conference of the International Speech Communication As-
sociation, Portland, Oregon, USA, September 9-13, 2012, 2012,
pp. 194–197.

[4] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of
generic convolutional and recurrent networks for sequence mod-
eling,” arXiv:1803.01271, 2018.

[5] S. Jean, K. Cho, R. Memisevic, and Y. Bengio, “On using
very large target vocabulary for neural machine translation,”
in Proceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume
1: Long Papers). Beijing, China: Association for Com-
putational Linguistics, 2015, pp. 1–10. [Online]. Available:
http://www.aclweb.org/anthology/P15-1001

[6] Y. Bengio and J.-S. Sénécal, “Quick training of probabilistic neu-
ral nets by importance sampling,” in Proceedings of the confer-
ence on Artificial Intelligence and Statistics (AISTATS), 2003.

[7] M. U. Gutmann and A. Hyvärinen, “Noise-Contrastive Estimation
of Unnormalized Statistical Models, with Applications to Natural
Image Statistics,” Journal of Machine Learning Research, vol. 13,
no. Feb, pp. 307–361, 2012.

[8] W. Chen, D. Grangier, and M. Auli, “Strategies for training
large vocabulary neural language models,” in Proceedings of
the 54th Annual Meeting of the Association for Computa-
tional Linguistics, ACL 2016, August 7-12, 2016, Berlin,
Germany, Volume 1: Long Papers, 2016. [Online]. Available:
http://aclweb.org/anthology/P/P16/P16-1186.pdf

[9] X. Chen, X. Liu, M. J. F. Gales, and P. C. Woodland, “Recurrent
neural network language model training with noise contrastive es-
timation for speech recognition.” in ICASSP. IEEE, 2015, pp.
5411–5415.

[10] R. Józefowicz, O. Vinyals, M. Schuster, N. Shazeer, and
Y. Wu, “Exploring the limits of language modeling,” CoRR, vol.
abs/1602.02410, 2016.

[11] S. Ji, S. V. N. Vishwanathan, N. Satish, M. J. Anderson,
and P. Dubey, “Blackout: Speeding up recurrent neural net-
work language models with very large vocabularies,” CoRR, vol.
abs/1511.06909, 2015.

[12] F. F. Liza and M. Grzes, “Improving language modelling with
noise-contrastive estimation,” CoRR, vol. abs/1709.07758, 2017.

[13] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowl-
edge in a neural network,” in NIPS Deep Learning and
Representation Learning Workshop, 2015. [Online]. Available:
http://arxiv.org/abs/1503.02531

[14] D. Yu, K. Yao, H. Su, G. Li, and F. Seide, “Kl-divergence
regularized deep neural network adaptation for improved large
vocabulary speech recognition,” in ICASSP 2013, January
2013. [Online]. Available: https://www.microsoft.com/en-
us/research/publication/kl-divergence-regularized-deep-neural-
network-adaptation-for-improved-large-vocabulary-speech-
recognition/

[15] H. Hassan Awadalla, A. Aue, C. Chen, V. Chowdhary, J. Clark,
C. Federmann, X. Huang, M. Junczys-Dowmunt, W. Lewis,
M. Li, S. Liu, T.-Y. Liu, R. Luo, A. Menezes, T. Qin, F. Seide,
X. Tan, F. Tian, L. Wu, S. Wu, Y. Xia, D. Zhang, Z. Zhang,
and M. Zhou, “Achieving human parity on automatic chinese
to english news translation,” March 2018. [Online]. Available:
https://arxiv.org/abs/1803.05567

[16] H. Kahn and A. W. Marshall, “Methods of reducing sample size
in monte carlo computations,” Operations Research, vol. 1, no. 5,
pp. 263–278, 1953.

[17] M. Freitag, Y. Al-Onaizan, and B. Sankaran, “Ensemble distilla-
tion for neural machine translation,” CoRR, vol. abs/1702.01802,
2017.

[18] A. Waters and Y. Chebotar, “Distilling knowledge from ensembles
of neural networks for speech recognition,” in Interspeech, 2016.

[19] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[20] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent
neural network regularization,” 2014. [Online]. Available:
https://arxiv.org/abs/1409.2329

[21] P. Werbos, “Backpropagation through time: what does it do and
how to do it,” in Proceedings of IEEE, vol. 78, no. 10, 1990, pp.
1550–1560.

3372

