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Abstract
In this study we address the problem of adding new classes to
an existing neural network classifier. We assume that new train-
ing data with the new classes is available. In many applications,
dataset used to train machine learning algorithms contain confi-
dential information that cannot be accessed during the process
of extending the class set. We propose a method for training
an extended class-set classifier using only examples with labels
from the new classes while avoiding the problem of forgetting
the original classes. This incremental training method is applied
to the problem of language identification. We report results on
the 50 languages NIST 2015 dataset where we were able to clas-
sify all the languages even though only part of the classes was
available during the first training phase and the other languages
were only available during the second phase.
Index Terms: language identification, adding new classes,
catastrophic forgetting, learning privacy.

1. Introduction
Assume we are given a deep neural network that was trained to
classify an object into one of the classes in a pre-defined set.
Often, our specific task requires adding new classes and given
an instance we need to select a class from the extended class-set.
We are given training data points that are labeled by categories
from the new set and our goal is to extend the given network
classifier to handle both the original and the new classes. The
obvious solution is to start training a classification network from
scratch that can classify an instance to one of the classes in the
extended set.

In this study we address a problematic but a common situ-
ation where we cannot access the training data points that were
used to train the classification system (but we can inspect the pa-
rameters of the trained model). We can only use a new dataset
that solely contains training examples with labels from the new
category set. This situation can occur when we want to mod-
ify a commercial product for our specific needs. For example,
suppose we are given a language identification system and we
want to include a few more languages in the system but we do
not have the language dataset used to train the original system.
This problem is also pertinent to cases where we want to extend
a model, but for computational reasons we do not want to train
this model from scratch, even though the whole training dataset
is available. In the case where we are only interested in the new
classes and we do not care about the old classes and if we have
enough training data we can train a new network from scratch.
If the new training dataset is small and we can inspect the net-
work parameters, we can apply transfer learning techniques [1]
that take the model that was fully-trained for the original cate-
gories and retrain it from the existing weights for new classes.
In the retraining process we can start from the current set of pa-
rameters or even freeze the first layers of the network. Standard

transfer learning techniques, however, do not work when we
want the network, which is trained only on the new classes to
also classify data from the original classes. This issue is related
to the notion of catastrophic forgetting, which is the tendency
of an artificial neural network to completely and abruptly forget
previously learned information upon learning new information
[2, 3].

In a wide variety of machine learning problems, the train-
ing dataset consists of sensitive data. In such applications, one
needs to train a machine learning model without compromising
privacy [4]. The learning challenge we address in this study can
occur when the data used to train the original system are confi-
dential and we cannot access them in the retraining phase while
adding new classes to the system. In recent years privacy preser-
vation in deep learning has became an active research area. The
existing literature on deep-learning privacy protection is mostly
related to the privacy of the data used for learning a model [5, 6].
The goal is to ensure that the learned model does not reveal any
information about the individual entries of the training set. In
all previous studies it is assumed that the data are available in
the training session and the challenge is to prevent the extrac-
tion of the training data from the trained model. Similarily, in
our problem, we were given a trained model without its training
data, so at the retraining phase we could not access the data with
labels that were used to train the original system. In the field of
privacy preserving, there are two kinds of machine learning at-
tacks: “black-box” attackers can apply the model to new inputs
of their choice, while “white-box” attackers can also inspect the
parameters of the model [4]. By considering the adding of new
classes to a given system as an “attack” on the original system,
in our problem we assume a white-box scenario where we can
inspect the model parameters.

Transfer learning uses knowledge from one task to help an-
other. A related problem is incrementally training a single net-
work to learn multiple tasks, where each task evaluated solely
on the data from its own dataset (see e.g. [7, 8]). A multi-task
situation in our setup occurs when we train the same network
to separately classify two disjoint sets of classes. In our class-
incremental situation we need to have a classifier that predicts
the object class but we do not know whether the object class is
in the original or the new set.

In this study we propose a training strategy for adding new
classes to an existing network where the dataset that was used
to train the network cannot be accessed. As far as we know, pre-
vious studies in related learning problems have been restricted
to the context of computer vision in various image understand-
ing tasks. Here, however, we apply the proposed method to the
task of language identification from the acoustic information
conveyed by the speech signal. The applications of language
identification systems include multilingual translation systems
and emergency call routing, where the response time of a flu-
ent native operator might be critical. In the past few years,
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with the growing focus on deep neural networks (DNN), DNNs
have also been applied to train language classification systems
[9][10]. In this study we applied the proposed training pro-
cedure to language recognition and report performance on the
NIST 2015 Language Recognition i-vector Machine Learning
Challenge [11]. In this task there are i-vector examples from 50
languages. We first train a classifier for a subset A of languages
and then extend it to classify all 50 languages while only hav-
ing training examples for the complementary set of languages
B. We show that by applying the proposed training strategy, the
obtained system can classify all 50 languages.

2. Adding Classes to an Existing Classifier
Consider a classifier that was trained to classify an input fea-
ture vector x to one of the classes in the set A = {1, ...., k}.
Suppose we want to add m new classes denoted by B =
{k+1, ..., k+m} to the system and we have training data
x1, ..., xn with corresponding labels y1, ..., yn that all belong
to B. We further assume that we can inspect the original model
parameters but we do not have access to the training data used
to train the original classifier. Our goal is to train a classifier for
the set A ∪B using the parameters of the A classifier and the
training data labeled by classes from B.

A deep learning classifier consists of two major compo-
nents. The first is a non-linear transformation h = h(x) and
the second is a linear soft-max layer that performs soft classifi-
cation of a given class-set A:

p(y = i|x) = exp(w>
i h(x))∑

j∈A exp(w>
j h(x))

, i ∈ A.

To simplify notation, we ignore the bias term of the linear input
to the soft-max.

non-linear function soft-max
x h p(y|x)

To cope with the extended class-set, we apply a transfer
learning strategy. We keep all parameters of the original net-
work fixed and only train a new parameter-set wk+1, ..., wk+m

which corresponds to the new labels. The modified softmax of
the new network is therefore:

p(y = i|x) = exp(w>
i h(x))∑

j∈A∪B exp(w>
j h(x))

, i ∈ A ∪B. (1)

The challenge is to find a parameters set that works well both
for the original classes and the new classes.

Given the training data with labels from B, the objective
function we want to optimize is the likelihood function:

S(wk+1, ..., wk+m) =
n∑

t=1

log p(yt|xt) (2)

=
n∑

t=1

log
exp(w>

yth(xt))∑
j∈A∪B ajt

.

such that ajt = exp(w>
j h(xt)). Note that although we do not

have any examples with labels fromA, the original class set still
appears in the denominator of the soft-max operation. It can be

easily verified that the objective function (2) is concave (it is
the same function that is optimized in training a logistic regres-
sion classifier). Hence, it is easy to obtain the unique maximum
parameter set.

The problem with this approach is that the model that op-
timizes (2) tends to completely forget the original class-set and
classify any input to a class from the new set B. We can formally
explain this behavior as follows. Let 1 be the all-ones vector and
α a positive scalar. Given a parameter set (wk+1, ..., wk+m) we
can form an α-shifted set: (wk+1+α1, ..., wk+m+α1). The like-
lihood score (2) of an α-shifted version of a given parameter-set
is:

S(wk+1+α1, ..., wk+m+α1) =
n∑

t=1

log
exp(w>

yth(xt))∑
j∈A

ajt

bt
+
∑

j∈B ajt

such that ajt = exp(w>
j h(xt)) and bt = exp(α1>h(xt)).

Assume the activation function used to compute the last hidden
layer is either ReLU or Sigmoid, then all the entries of h(xt)
are non-negative and therefore α1>h(xt) > 0 which implies
that bt > 1. Each training point (xt, yt ∈ B) thus satisfies:

exp(w>
yth(xt))∑

j∈A

ajt

bt
+
∑

j∈B ajt
≥ exp(w>

yth(xt))∑
j∈A ajt +

∑
j∈B ajt

. (3)

Summing (3) over all the training points we obtain that:

S(wk+1 + α1, ..., wk+m + α1) ≥ S(wk+1, ..., wk+m).

The likelihood score (2) thus monotonically increases as a func-
tion of α. The probability to classify an object x to a label i ∈ A
based on the α-shifted parameters is:

p(y = i|x) =
ai
b∑

j∈A

aj

b
+
∑

j∈B aj
(4)

such that ai = exp(w>
i h(x)) and b = exp(α1>h(x)). Eq. (4)

implies that for i ∈ A:

p(y = i|x) ≤
ai
b∑

j∈B aj
= c · exp(−α1>h(x)) (5)

such that

c =
exp(w>

i h(x))∑
j∈B aj

is a constant that does not depend on α. As α approaches in-
finity exp(−α1>h(x)) tends to 0 and therefore the probability
p(y = i|x) tends to 0. Hence, for each parameter-set of the
new labels we can find a better solution that ignores the original
set A. This analysis exemplifies the principle of catastrophic
forgetting that is caused by the fact that the past data are not
available during training.

To overcome the problem described above we regularize the
objective function in such a way that we spread part of the mass
of each point over the classes from A. The modified objective
function is:

S(wk+1, ..., wk+m) = (6)

(1− ε)
n∑

t=1

log p(yt|xt) + ε
n∑

t=1

1

|A|
∑

i∈A

log p(y = i|xt)

such that ε is a parameter that controls the regularization term.
In the next section we analyze the optimal value of ε as a func-
tion of the relative sizes of the old and new class sets. We

1809



Table 1: Adding Classes Without Original Data (ACWOD) al-
gorithm.

Input:
• A network that predicts classes in A:

p(y = i|x) = exp(w>
i h(x))∑

j∈A exp(w>
j h(x))

, i ∈ A.

• Training data x1, ..., xn with corresponding labels
y1, ..., yn from a disjoint class-set B.

• No training data with labels from A are available.

Goal: Extend the network to predicts all classes in A ∪B:

p̃(y = i|x) = exp(w>
i h(x))∑

j∈A∪B exp(w>
j h(x))

, i ∈ A ∪B.

Algorithm: Fix the model parameters and find the parame-
ters {wi|i ∈ B} that maximize the following concave objec-
tive function:

S =
n∑

t=1

(
(1−ε) log p̃(yt|xt) + ε

|A|
∑

i∈A

log p̃(y = i|xt)
)

dub this algorithm ACWOD (Adding Classes Without Original
Data). The ACWOD algorithm is summarized in Table 1.

An alternative regularization scheme is based on the
Knowledge Distillation loss, which Hinton et al. [12] showed to
work well to encourage the outputs of one network to approxi-
mate the outputs of another:

(1− ε)
n∑

t=1

log p(yt|xt) + ε
n∑

t=1

∑

i∈A

pti log p(y = i|xt)

where pti is the probability that training datum xt is classified
to i ∈ A in the original network. We found, however, that in
our language recognition tasks, a simple flat averaging regular-
izing (6) achieves similar results. This emphasizes that the main
challenge in our learning problem is to avoid the catastrophic
forgetting problem and that the reenforcement of the original
model is less important.

We note in passing that the analysis presented above is
based on the fact that the representation obtained by the ReLU
activation function is non-negative. We can replace ReLU by
Tanh which can be either positive or negative. Using Tanh
without regularization may help a little with the catastrophic
forgetting problem, but we found empirically that combining
it with the regularization defined above yields inferior results
compared to ReLU.

We suggest that ε should be a linear function of the pro-
portion of |A| out of the total number of classes. We can then
formulate ε as follows:

ε = c× |A|
|A|+ |B| (7)

This means that the weight of the regularization term for each
class in the original class set should be constant. The value of
c depends on the dataset and on the original model we were
given, and was empirically measured to be 0.7 for our problem.

In the experiment section we show that setting ε to be a linear
function of the size of the original class-set is indeed a good
approximation of the optimal value.

3. Experiments
3.1. The NIST 2015 dataset

The NIST 2015 language recognition challenge [11] has labeled
data from 50 target languages (300 speech segments per lan-
guage). Table 2 lists the 50 languages arranged by linguistic
families. There are 9 singleton languages of two kinds: lan-
guages that constitute a family of their own (no known sister
languages), such as Japanese, and languages that belong to a
broader linguistic family, such as English which is a Germanic
language, but were the only representative of this family in our
data set. Another interesting unique member of the training set
is Creole, which is basically a family of languages. The speech
duration of the audio segments used to create the i-vectors for
the challenge were sampled from a log-normal distribution with
a mean of approximately 35s. The speech segments were de-
rived from conversational telephone and narrow-band broadcast
speech data. Each speech segment is represented by an i-vector
of 400 components [13]. The NIST challenge also contains an
unlabeled dataset that was not used in this study.

Table 2: The 50 classes of the NIST-2015 language identifica-
tion dataset arranged by linguistic families.

Languages (Sub)Family
Hausa, Somali, Oromo, Arabic, Amharic Afro-Asiatic
Indonesian, Tagalog Austronesian
Ukrainian, Polish, Slovak, Czech, Russian, Bosnian Balto-Slavic
Hindi, Urdu, Punjabi, Bengali Indo-Aryan
Pashto, Kurdish, Tajik, Farsi, Dari Iranian
Romanian, French, Portuguese, Spanish Italic
Shona, Swahili, Zulu Niger-Congo
Burmese, Cantonese, Mandarin, Tibetian Sino-Tibetan
Laotian, Thai Tai-Kadai
Tatar, Turkish, Kyrgyz, Uzbek, Azerbaijani, Kazakh Turkic
English, Georgian, Greek, Japanese, Khmer,
Kosovo, Creole, Armenian, Korean Singleton

3.2. Implementation details

The classifier we used here is a two fully connected hidden layer
Deep Neural-Network (DNN) comprising 200 and 100 neurons
each and a soft-max output layer. The activation function was
set to be ReLU and the optimization procedure used was mini-
batch RMSprop. We also used L2 regularization to prevent
over-fitting. For each language we used 255 speech segments
for training and the remaining 45 segments for performance
evaluation.

3.3. Results

In the experiments we first trained a DNN classifier to classify
a speech segment to one of the classes in a subset A of the 50
languages in the NIST-2015 data-set. Then we used examples
from the remaining languages to extend this model so it could
classify all 50 languages.

We set ε as described in Eq. (7). We computed the per-
formance results as a function of the proportion of the original
class-set |A|, out of the extended set |A ∪B|. We compared our
approach to two other alternative methods. The first one was the
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original classifier that was trained solely on examples with la-
bels from set A. This method actually maintains the accuracy
of set A, while always being wrong when predicting examples
with labels from set B. We refer this method as the original
model. The second naive method is formed by setting ε to zero.
In other words, this method does not regularize the score func-
tion, so the model forgets the original classes, and thus classifies
any feature vector as one of the new classes from set B, as ex-
plained above. We refer to this method as the unregularized
model. These two methods are clearly inferior to the proposed
approach and they are shown as references to assess the perfor-
mance of our method.

Fig. 1 shows the language identification performance on
the evaluation set as a function of the size of the original class-
set. The accuracy of the final model was calculated using the
full test set composed of examples with labels from all 50 lan-
guages. As shown, we achieved better performance on the en-
tire class-set than the original model even though we did not use
any examples from the original class set. When we set ε = 0 the
catastrophic forgetting principle caused the system to classify
all speech segments to a class from the new set. We might have
expected that in this model, performance would improved as a
function of the size of the new class-set. Fig. 1, however, indi-
cates that if the original class set is small there is a performance
degradation. This is due to the fact that in this case the qual-
ity of the non-linear representation h(x) that is only learned in
the first step is low and the representation does not have enough
information to represent all the languages in the new set. By
comparison, when training the same model from the beginning
with training data that include all 50 languages we achieved an
accuracy of 81.2%. Hence, when |A| is a relatively a big pro-
portion of the extended class-set, there is only a small drop in
performance.

Figure 1: Language classification accuracy as a function of the
percentage of labels in the first (frozen) training stage.

A major component of the proposed algorithm is the reg-
ularization term. Parameter ε balances the likelihood and the
regularization component of the score. For each |A|, we ana-
lyzed and found empirically the regularization parameter ε that
maximized the accuracy of the extended classifier. Fig. 2 de-
picts the optimal ε values as a function of the original class-set
|A|. It can be seen that optimal ε increases monotonically as a
function of the original class set. It is also evident that optimal
ε values can be approximated as a linear function of the propor-

Figure 2: The value of the optimal regularization weight pa-
rameter ε as a function of the percentage of labels in the first
(frozen) training stages.

tion of |A| out of the total number of classes, as we suggested
in Section 2. We computed the optimal ε in other situations and
observed similar behavior. The slope of the linear function de-
pends on the dataset and on the original model we were given,
but the linear behavior of the importance of the regularization
term is a general phenomenon.

4. Conclusions
In this study we addressed the challenge of getting an exist-
ing model to recognize additional classes without any access to
the data that were used to train the original classifier. We pro-
posed a deep learning method which enabled us to transfer the
learned network to classify the new classes while maintaining
its ability to classify the original set. We illustrated the proposed
method on the task of language identification and showed that
the goal of classifying both the original languages and the addi-
tional language can be done with only a relatively small drop in
performance when we add a relatively small number of classes,
compared to the case of fully observed training data. The pro-
posed method is general and can be applied to any deep learning
classification problem.
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