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Abstract
This research work investigates the possibility of using au-

tomatic acoustic measures to assess speech fluency in the con-
text of second language (L2) acquisition.

To this end, three experts rated speech recordings of
Japanese learners of French who were instructed to read aloud
a 21-sentence-long text. A Forward-Backward Divergence
Segmentation (FBDS) algorithm was used to segment speech
recordings (sentences) into acoustically homogeneous units at
a subphonemic scale. The FBDS processing results were used
— along with more classic measures such as raw percentage
of speech and length/standard deviation of silent pauses — to
estimate speech rate and regularity of speech rate, while a for-
mant tracking algorithm was used to estimate speech fluidity
(i.e., quality of coarticulation). A step-by-step multiple linear
regression was finally computed to predict the experts’ mean
fluency ratings.

Results show that FBDS-derived measures, raw percent-
age of speech, and standard deviation of the first formant curve
derivative can be combined together to calculate accurate es-
timates of speakers’ fluency scores (R = .92;P < .001).
As only low-level signal features were used in the study, the
method could also be relevant for the assessment of speakers of
other target languages, as well as for the assessment of disor-
dered speech.
Index Terms: Speech fluency, Second language acquisition,
Automatic measures, Japanese, French, Learner corpus

1. Introduction
The concept of speech fluency is a broad one, since it can relate
not only to pronunciation, but also to lexical access, syntactic
complexity, discourse planning or even overall linguistic profi-
ciency. However, in the field of second language (L2) speech
processing, fluency is usually defined in relation to accent, in-
telligibility and comprehensibility [1], with a specific focus on
temporal features such as pauses and speech rate [2]. From
a pedagogical perspective, it can be defined as “the degree to
which speech flows easily without pauses and other disfluency
markers” [3, p. 5]. Therefore, for L2 learners, the acquisition
of a native-like fluency is an important goal, and its assessment
usually a requirement. Yet, as is the case for other dimensions
of pronunciation assessment [4, 5], fluency can be evaluated in
different ways, either as perceived fluency, e.g. by human listen-
ers on a given scale, or through phonetic-phonological analyses,
with measures of speech rate, phonation time ratio, pruned syl-
lables, articulation rate, mean length of runs, silent pause ratio
or filled pause ratio [1].

Because perceptual evaluations are subjective and phonetic-
phonological analyses are time-consuming, several attempts

have been made to measure L2 speakers’ fluency – as captured
by experts’ ratings – by means of automatic techniques. For
example, automatic speech recognition (ASR) was used to cal-
culate temporal variables such as rate of speech, phonation ra-
tio, and mean length of pauses that proved to be strongly corre-
lated with fluency ratings [6]. After being applied with success
to read speech, the application of these objective techniques
was extended to the more challenging evaluation of spontaneous
speech fluency [7].

However, using ASR to assess the fluency of L2 speakers
presents several limitations. The first and most obvious limit is
that ASR-derived methods are dependent on the target language
the ASR systems were set up for. Second, the performances of
ASR systems – in terms of word error rate and phonetic align-
ment – depend on the canonicity of speech they are fed with;
ASR results tend therefore to lack reliability if their acoustic
models were not sufficiently trained on speech produced by L2
speakers [8]. Finally, ASR can be thought of as a rather heavy
method: the sole creation of acoustic models generally relies on
the annotation of hundreds of hours of speech.

For another purpose – namely the assessment of patholog-
ical speech – some researchers [9] recently set up a different
approach that goes beyond the above-mentioned limits. The au-
thors used only low-level signal (acoustic) measures – both tem-
poral (e.g. total length of silent pauses) and spectral (number of
abrupt spectral changes) – to predict fluency ratings for stutter-
ers. Their results showed that human ratings could be predicted
by the automatic acoustic measurements.

The present study investigates the use of similar low-level
signal analyses to predict speech fluency ratings for learners of
a second language with Japanese learners of French as a pilot
population. The long-term objective of this work is to integrate
an objective and rapid tool for the assessment of speech fluency
into a computer-assisted pronunciation training (CAPT) soft-
ware [10, 11].

2. Speech materials
2.1. Speakers

Eight undergraduate Japanese university students (4 male, 4 fe-
male, age 18-22) participated in this study; at the time of the
recordings, they were studying French in two universities in
Tokyo (Japan). In order to get different levels of expected flu-
ency, we selected 12 sets of data from the Corpus Longitudinal
Interphonologique de Japonais Apprenants de Français (CLI-
JAF) [12], couched within the framework of the InterPhonolo-
gie du Français Contemporain recording protocol [13, 14]. The
CLIJAF corpus is made up of two parts: a two-year long longi-
tudinal study of beginner Japanese learners of French on the
one hand, and a study of pre-advanced Japanese learners of
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French who have studied in a French-speaking environment at
least once in their life on the other hand. Therefore, 4 stu-
dents were recorded twice (respectively after 4 and 19 months
of study), while the 4 other students were more advanced (they
all had studied for at least 1 year in France, during their pri-
mary, secondary or higher education). In relation to the overall
linguistic proficiency levels defined within the Common Euro-
pean Framework of Reference for Languages [15], our data in-
cluded 4 speakers/levels of A1 level (beginners), 4 of B1 level
(intermediate) and 4 of B2 level or above (advanced).

2.2. Recording task

Participants read out the text ”Le Premier Ministre ira-t-il à
Beaulieu” used in the recording protocol of the (I)PFC project
((Inter)Phonologie du Français Contemporain, [16]), an artifi-
cially constructed text similar to a short local newspaper article
designed to cover all main aspects of French phonology, and
used both with native and non-native speakers [17]. The text
consisted of 21 sentences; to help the Japanese learners, it was
divided into short paragraphs, each preceded by a brief sum-
mary in Japanese.

In total, the participants recorded 252 sentences, for an ap-
proximate length of 48 minutes. As the recordings took place
in different locations (PC classrooms equipped with headphone
and microphone sets, as well as soundproof recording studios),
their quality is heterogeneous.

3. Human fluency ratings
3.1. Participants and procedure

Three native French speakers, with a solid background in sec-
ond language acquisition and phonetics, took part in the rat-
ing tasks. They had a significant experience in perceptive as-
sessment of non-native speech; they were instructed to judge
the 252 sentences based on four different dimensions, each of
which was scored on a 5-point scale:

• Global fluency: perceived ease of speech (from 0 – non
fluent to 4 – as fluent as a native speaker);

• Speech rate: perceived speed of speech (from 0 – very
slow to 4 – as fast as a native speaker talking relatively
fast);

• Regularity of speech rate: perceived changes in the
tempo (accelerations, decelerations and breaks; from 0
– very irregular to 4 – totally regular);

• Speech fluidity: perceived fluidity of coarticulation
(smoothness of transitions between phones; from 0 – not
fluid at all to 4 – as fluid as speech produced by a native
speaker).

A web-based user interface, connected to a database, was
created for the rating task. The sentence recordings were pre-
sented in a random order to the human raters, who could score
each one into a dedicated JavaScript form. At any time during
the rating procedure, the raters were free to replay any recording
and could, if necessary, change the associated scores.

At the end of the rating procedure (which took approxi-
mately five hours for each rater) a total of 3,024 scores (252
sentences × 4 dimensions × 3 raters) were collected.

3.2. Inter-rater agreement

Table 1 shows inter-rater Spearman’s rank correlation coeffi-
cients as a function of the four rating dimensions: global flu-

ency, speech rate, regularity of speech rate, and speech fluid-
ity. As can be observed, all correlations are highly significant
(P < .001), and their strength ranges from moderate (for reg-
ularity of speech rate .58 ≥ ρ ≤ .69) to strong (for the three
other dimensions .72 ≥ ρ ≤ .84).

Table 1: Inter-rater agreement for speech fluency, speech rate,
regularity of speech rate, and speech fluidity ratings, as mea-
sured by Spearman’s rank correlation coefficients (n = 252)

Rater 2 Rater 3

Speech fluency Rater 1 .84∗∗∗ .80∗∗∗

Rater 2 .80∗∗∗

Speech rate Rater 1 .77∗∗∗ .77∗∗∗

Rater 2 .72∗∗∗

Regularity of speech rate Rater 1 .58∗∗∗ .69∗∗∗

Rater 2 .62∗∗∗

Speech fluidity Rater 1 .72∗∗∗ .76∗∗∗

Rater 2 .77∗∗∗

∗∗∗P < .001

3.3. Computation of final scores

As we observed a good agreement between raters, the ratings
were eventually averaged for each sentence. Some information
on the distribution of the resulting scores is reported in Table 2.
For each dimension the scores range from very low values (0
or .3) up to the maximum value of 4; mean scores are close
to the center value (2) of the five-point scales used for the rat-
ings. However, the Kolmogorov-Smirnov test shows that scores
do not follow a normal distribution (P < .001 for all four di-
mensions); hence, for consecutive comparisons between human
ratings and automatic scores only non-parametric tests are used.

Table 2: Distribution of mean scores among the 252 sentences
for each annotated dimension (Std. dev.: Standard deviation;
Reg.: Regularity)

Variable Min Max Mean Std. dev.

Fluency 0 4 2.3 1.0
Speech rate 0.3 4 2.4 0.9
Reg. of speech rate 0.3 4 2.2 0.9
Fluidity 0 4 2.2 1.0

4. Automatic measures
4.1. Automatic segmentation of speech

The segmentation algorithm used in this study was proposed by
[18]. In this approach the speech signal is conceived as a se-
quence of almost stationary segments, each one being modelled
by an auto-regressive Gaussian model:

{
yn =

∑
aiyn−i + en;

var(en) = σn

(1)

with y the speech signal and e a Gaussian white noise. The
algorithm analyses the speech signal on both a long-term and
a short-term scale (here a 10ms sliding window), and calcu-
lates the distance between the two resulting models, using the
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Kullback-Leibler divergence measure [19]. When the diver-
gence exceeds a given threshold, the lower limit of the short-
term window is labeled as a segment boundary, and the analysis
continues forward. As this analysis process is not symmetric,
it is also performed backward and the results of the forward
and backward segmentation processes are finally merged. This
segmentation algorithm, referred to as Forward-Backward Di-
vergence Segmentation (FBDS), results in a subphonemic seg-
mentation [18].

4.2. Computation of individual predictors

4.2.1. Speech rate

For each sentence, speech rate was measured as the number of
segments produced by the FBDS algorithm, divided by the sen-
tence duration (in seconds). The underlying asumption is that
the higher the speech rate, the larger the number of segments
found by the FBDS algorithm.

4.2.2. Regularity of speech rate

The regularity of speech rate, for a given sentence, was com-
puted as the standard deviation of the lengths of the segments
found by the FBDS algorithm (in seconds). It was hypothesized
that the presence of long pauses and hesitations in a sentence
would increase the variability of speech segments duration, and
therefore those of FBDS segments.

4.2.3. Speech fluidity

The only spectral analysis conducted for the automatic estima-
tion of speech fluency was that of fluidity of coarticulation.
Given that fluency is related to the anticipation of sounds to
be produced [20], it was hypothesized that a lack of planning
would result in abrupt transitions between phones, i.e., in a poor
coarticulation.

In order to quantify this phenomenon, as the acoustic for-
mants are linked to the movements of speech articulators, a
tracking of speech formants was implemented. The analysis
was however limited to that of the first formant. It was assumed
that the less speech movements are anticipated, the most abrupt
transitions would be found between speech sounds. As a conse-
quence, the estimation of (lack of) speech fluidity was computed
as the standard deviation of the first formant curve derivative.

4.2.4. Length and regularity of silent pauses, percentage of
speech

Silent pauses were automatically detected as segments where
amplitude was not exceeding 10% of the maximum amplitude
found in the sentence, and lasting at least 250 ms. The regularity
of silent pauses was computed for each sentence as the standard
deviation of silent pauses duration.

Raw percentage of speech was simply calculated as 100 mi-
nus the silent pause percentage (i.e., 100 minus the total pause
length divided by the total duration of recordings and multiplied
by 100).

5. Results
5.1. Individual estimators of speech rate, regularity of
speech rate, and fluidity

Table 3 presents the correlations between the automatic estima-
tors of speech rate, regularity of speech rate, and fluidity, and
the human annotations. As expected, the estimated speech rate

(i.e., the rate of FBDS segments) is strongly and positively cor-
related with perceived speech rate, meaning that the higher the
perceived speech rate, the larger the number of segments found
by the FBDS algorithm.

Also, the estimator of the regularity of speech rate (i.e., the
standard deviation of FBDS segment length) is negatively cor-
related with the human annotations. In other words, the more
irregular the speech rate is perceived, the more variability is
found in the length of FBDS segments – which is in line with
our original assumption.

Finally, measures of fluidity of coarticulation are negatively
(though weakly) correlated with perceived fluidity, meaning
that – as expected – the more fluid speech is perceived, the
weaker the variations in first formant tend to be.

Table 3: Bivariate correlations between automatic estimators
and human annotations of speech rate and speech fluidity

Variable Spearman’s ρ P-value

Speech rate .77 < .001
Regularity of speech rate -.72 < .001
Fluidity -.21 .001

5.2. Prediction of speakers’ fluency ratings

To predict human fluency ratings, a step-by-step linear regres-
sion was computed for the 252 observations (i.e., the 252 sen-
tences) with, as dependent variable, mean fluency score, and, as
independent variables, all the automatic measures: speech rate,
regularity of speech rate, speech fluidity, mean length of silent
pauses, standard deviation of the length of silent pauses, and
percentage of speech.

The best linear model (R = .82) rejected two out of the
six independent variables: mean duration of silent pauses and
standard deviation of silent pauses. This rejection might be due
to the fact that both variables were significantly correlated with
some other predictors (ρ = −.66 and P < .001 between per-
centage of speech and mean duration of pauses; ρ = .44 and
P < .001 between standard deviation of pauses and regularity
of speech rate), and thus did not bring enough predictive power
to the model.

Table 4 presents the standardized coefficients of the four
remaining predictors. Speech rate appears to be the main con-
tributor for the model, followed by the regularity of speech rate,
percentage of speech, and speech fluidity. The Kolmogorov-
Smirnov test indicates that the distribution of the model resid-
uals is not statistically different from a normal distribution
(P = .20).

As the long-term objective of the present work is to create
a CAPT tool for the automatic assessment of the fluency of in-
dividual L2 learners, prediction scores were aggregated for the
12 learners/levels involved in the study. Figure 1 illustrates the
strong and positive relationship between the human fluency rat-
ings and automatic scores (R = .92;P < .001).

However, in the context of L2 teaching, time constraints are
often decisive, and the number of sentences used in this study
for each learner/level (n = 21) might not be realistic in this re-
gard. One question is thus to determine the amount of sentences
needed to get reliable estimates of speech fluency.

In order to adress this point, correlations between auto-
matic and human fluency ratings were computed for a varying
number n of sentences considered for each learner/level (with
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Table 4: Standardized (beta) coefficients of predictors found by
the multiple linear regression

Predictor β-coefficient P-value

Estimator 0.61 < .001
of speech rate
Est. of speech -0.19 .001
rate regularity
Percentage 0.17 < .001
of speech
Est. of -0.15 < .001
speech fluidity

1 ≤ n ≤ 21). For each n number of sentences, the index of
the first sentence considered varied from 1 to 21. As a conse-
quence, for each number n of sentences, 21 correlations were
calculated.
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Figure 1: Scatterplot relating, for the 12 learners/levels, mean
human fluency ratings and automatic scores (equation for the
regression line: y = 1.18x− 0.41; R = .92, P < .001)

Figure 2 shows the mean coefficients of determination R2

for each n number of sentences considered per learner/level,
and the associated standard deviations. As can be seen, the
mean coefficient of determination tends to follow a logarithmic
growth as a function of the number of sentences considered. For
n > 4, the mean R2 value exceeds .80, which may be consid-
ered as a strong coefficient of determination.

6. Discussion
The main objective of this study was to use automatic and “low-
level” acoustic measures in order to predict experts’ fluency rat-
ings for speech produced by Japanese learners of French. In
this regard, the results are very encouraging, with strong cor-
relations observed between automatic and human ratings. The
two most contributive predictors are the automatic estimators of
speech rate and of regularity of speech rate, both derived from
the results of the Forward-Backward Divergence Segmentation
(FBDS) algorithm [18].
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Figure 2: Mean R2 coefficient between predicted and observed
fluency scores as a function of the number of sentences con-
sidered per learner/level. Error bars represent ± one standard
deviation.

Even if the correlations achieved are rather high, the con-
tribution of other acoustic measures could be investigated. For
example, the presence of filled pauses due to reading hesita-
tions were not directly taken into account in this study. The
presence of filled pauses have certainly influenced the measures
of rate of speech and of regularity of speech rate – because filled
pauses result in longer FBDS segments – but maybe the predic-
tion of perceived fluency could be enhanced by direct measures
of mean length and/or number of filled pauses.

Also, because the tracking of several formants at the same
time can be tricky, in this study the speech fluidity measure was
limited to the analysis of the first formant curve. A next step
could be to integrate the tracking of other formants – which
relate to other points of articulation such as tongue and lips –
and to measure their benefit for the prediction of speech fluency.

From a more applied point of view, the results show that
the measures can be combined to create a predictive system for
gaining rapid and objective estimates of speech fluency, achiev-
ing a high reliability when considering more than four sentences
per speaker. Future work will be devoted to the integration of
these measures into a computer-assisted pronunciation training
tool designed for Japanese learners of French [10, 11, 21]. How-
ever, as only low-level acoustic measures are used, the predic-
tion system might prove useful for the assessment of speakers of
other target/source languages, or even for the objective assess-
ment of pathological speech; they could be used as a comple-
ment to automatic measures of speech comprehensibility [22] or
segmental production [23] for pathologies causing speech flu-
ency disorders such as Parkinson’s disease [24].
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CAPT-L2 : aspects phonétiques et lexicaux,” in Traitement au-
tomatique de la parole et ressources pour la didactique de l’oral
en L2 : variation, corpus, techniques, Toulouse, France, 2017.

[12] S. Detey, “CLIJAF: corpus longitudinal interphonologique de
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tomatiques et enjeux pour l’apprentissage,” Traitement Automa-
tique des Langues, vol. 57, no. 3, pp. 15–39, 2016.

[22] L. Fontan, T. Pellegrini, J. Olcoz, and A. Abad, “Pre-
dicting disordered speech comprehensibility from Good-
ness of Pronunciation scores,” in SLPAT – Satellite
worshop of Interspeech ’15, 2015. [Online]. Available:
http://www.slpat.org/slpat2015/papers/fontan-pellegrini- olcoz-
abad.pdf

[23] T. Pellegrini, L. Fontan, J. Mauclair, J. Farinas, and M. Robert,
“The Goodness of Pronunciation algorithm applied to disordered
speech,” in Proceedings of Interspeech ’14, 2014, pp. 1463–1467.

[24] A. M. Goberman and M. Blomgren, “Parkinsonian speech disflu-
encies: effects of l-dopa-related fluctuations,” Journal of Fluency
Disorders, vol. 28, no. 1, pp. 55–70, 2003.

2548


