
Statistical Model Compression for Small-Footprint Natural Language
Understanding

Grant P. Strimel*, Kanthashree Mysore Sathyendra*, Stanislav Peshterliev*

Alexa Machine Learning, Amazon.com
{gsstrime,ksathyen,stanislp}@amazon.com

Abstract
In this paper we investigate statistical model compression ap-
plied to natural language understanding (NLU) models. Small-
footprint NLU models are important for enabling offline sys-
tems on hardware restricted devices, and for decreasing on-
demand model loading latency in cloud-based systems. To com-
press NLU models, we present two main techniques, parameter
quantization and perfect feature hashing. These techniques are
complementary to existing model pruning strategies such as L1
regularization. We performed experiments on a large scale NLU
system. The results show that our approach achieves 14-fold re-
duction in memory usage compared to the original models with
minimal predictive performance impact.
Index Terms: natural language understanding, model compres-
sion

1. Introduction
Voice-assistants with natural language understanding (NLU)
[1], such as Amazon Alexa, Apple Siri, Google Assistant, and
Microsoft Cortana, are increasing in popularity. However with
their popularity, there is a growing demand to support availabil-
ity in many contexts and wide range of functionality.

To support Alexa in contexts with no internet connection,
Panasonic and Amazon announced a partnership to bring of-
fline voice control services to car navigation commands, tem-
perature control, and music playback [2]. These services are
“offline” because the local system running the voice-assistant
may not have an internet access. Thus, instead of sending the
user’s request for cloud-based processing, everything including
NLU has to be performed locally on a hardware restricted de-
vice. However, cloud-based NLU models have large memory
footprints which make them unsuitable for local system deploy-
ment without appropriate compression.

Furthermore, to support wide range of functionality, Ama-
zon Alexa and Google Assistant support skills built by external
developers. Each skill has NLU models that extend the func-
tionality of the main NLU models. Since there are many skills,
their NLU models are loaded on demand only when needed to
process user request [3]. If the skill NLU model sizes are large,
loading them into memory adds significant latency to utterance
recognition. Thus, small-footprint NLU models are important
for providing quick NLU response and good customer experi-
ence.

Typically NLU models consist of domain classification
(DC), intent classification (IC) and named-entity recognition
(NER) models. DC predicts the general domain class of a
user utterance such Music, Shopping, and Cinema. IC pre-
dicts the user intent within a domain such as PlayMusicIntent,

*The authors have equal contribution to this work. The names are
in alphabetical order.

BuyItemIntent, or MovieShowTimesIntent. And, NER recog-
nize domain-specific named-entities such as artist name and
song name for the Music domain, and item name and product
type for the Shopping domain.

In this paper, we investigate statistical model compression
for NLU DC, IC, and NER models. We use n-gram maximum
entropy (MaxEnt) [4] models for DC and IC, and n-gram con-
ditional random fields models (CRF) [5] for NER, but this work
can be extended to any type of model with large number of fea-
tures. We aim to reduce the large scale MaxEnt and CRF models
memory footprint to enable local voice-assistants and decrease
latency of loading skill NLU models in the cloud. We present
two main techniques, parameter quantization and perfect hash-
ing. We demonstrate these techniques’ effectiveness with both
empirical and theoretical justification. Also, we detail the trade-
offs of time, space, and predictive performance.

2. Background and Related Work
Various methods have been proposed to reduce the memory and
CPU footprint of machine learning models for image classifica-
tion [6, 7], keyword spotting [8, 9], language models [10, 11],
acoustic models [12, 13], and text classification [14, 15]. These
methods fall into three classes. (i) Pre-processing methods –
these include classic dimensionality reduction techniques like
principal component analysis, feature hashing [16], and random
projection [17, 18] as well as deep autoencoders [19] and sparse
autoencoders [20]. (ii) Learning algorithm methods – this is
where the learning algorithm itself is programmed to produce a
small model. Examples include L1-regularization, greedy step-
wise feature selection, boosting of small-simplified models, and
synaptic-pruning [21]. (iii) Post-processing methods – these in-
clude methods such as parameter quantization [6] and data rep-
resentation optimizations [7].

Commonly, pre-processing and learning algorithm methods
are already incorporated into the cloud model building process
for a voice-assistant, so in this work, our efforts are primarily
directed towards the post-processing methods. Parameter quan-
tization has been shown to be effective for reducing memory
footprint for both traditional and deep models. However, as far
as we know perfect hashing has not been applied to MaxEnt and
CRF compression, but only to language models [10].

3. Model Compression Approach
3.1. Objective

Our primary objective is to design algorithms which take
large statistical NLU models and produce models which are
equally predictive but have smaller memory footprint. This
post-processing compression allows for reusing existing model
building configurations and pipelines without maintaining sep-
arate ones for small-footprint models.

Interspeech 2018
2-6 September 2018, Hyderabad

571 10.21437/Interspeech.2018-1333

http://www.isca-speech.org/archive/Interspeech_2018/abstracts/1333.html

We evaluate the statistical model size reduction along three
dimensions: time, space, and predictive performance. Time
refers to the computational runtime complexity to perform a
prediction. Space is measured as the number of bits required
to store the model in memory. We use the term predictive per-
formance to refer to the evaluation metric of choice such as F1
score and accuracy. Challenges arise in balancing the tradeoffs
across these three dimensions as often improving on one will
cost on the other two. For example, improving model predic-
tion performance may require larger models and slower decod-
ing time; while an effort to reduce decoding time may degrade
predictive performance and increase the memory needed. Thus,
it is important to find the best tradeoff for any given application.

3.2. Our Techniques

We propose two techniques to perform statistical model com-
pression quantization and perfect hashing. Individually, these
approaches yield moderate model size reduction, but we com-
bine them to achieve significant compression rates with minimal
time and predictive performance tradeoffs. Before detailing the
algorithms, we now briefly discuss a generalized model struc-
ture with accompanying notation.

A machine learning model’s memory footprint can be
viewed principally as a large map from feature name to numeric
weight. In NLU typically, there is an initially large universe U
of potentially active or relevant features (such as all English bi-
grams). Of those features, a subset S, whose cardinality can be
much smaller than that of U , are the relevant parameters chosen
by the learning algorithm using feature selection methods. The
relevant features and their corresponding weights are stored in
the map while the irrelevant parameters have 0 weight or are
simply excluded from the model. For convenience we denote
n = |S| and assume all 0 weight parameters are excluded from
S.

At runtime, to use the model to evaluate an instance, a set
S′ ∈ U of parameters will be accessed. For MaxEnt and CRF,
this instance parameter set will be small, |S′| � |S|. Thus, for
each instance only a relative small number of parameters will be
required to make a prediction. For example, if U is all English
bigrams, S would be a smaller set of those bigrams which are
useful features for the prediction task, and S′ would be those
bigrams present in a single utterance. Hence S ∩ S′ are those
parameters and weights needed to be accessed to predict on that
instance.

If the parameter map is implemented as a hash map, the
model memory footprint in total bits will be O(n · (s + w))
where n is the number of total parameters of the model, and s
and w are the sizes of the parameter name and weight respec-
tively in bits. The expected lookup time for a parameter is then
O(s + w), which is constant for bounded s and w. Our goal
is reduce this footprint while maintaining the lookup cost with
little to no predictive performance degradation.

3.3. Quantization

Our initial step to model compression is model parameter quan-
tization. To apply parameter quantization, we first choose a set
of representative value cluster centers and then assign each pa-
rameter to its nearest cluster. When a parameter weight is ac-
cessed, its representative value is used in-place of the original
value during the computation. The advantage from a data stor-
age perspective is that we now need only store the cluster iden-
tifier at each entry in our map instead of the full weight. Each
weight in the map will be replaced by its cluster index which

requires only O(log k) bits where k is the number of clusters
chosen. Additionally, we must now store a small table of cor-
responding weights mapping each index to the representative
cluster centers. And to predict a new instance we execute the
computation by looking up the quantized index for each feature
of S ∩ S′ then determining their quantized weights from the
small table.

In terms of space, our parameter name to quantized index
map is now reduced to a size ofO(n(s+log k)) while our small
table is of sizeO(wk) for a total size ofO(n(s+log k)+wk).
In terms of runtime speed, the expected lookup time remains
O(s+w) with an additional cache miss due to the use of a sec-
ond table. Using 256 bins requires only 8 bits per entry value to
store the weights, as opposed to the 64 bits required for double
precision or 32 bits for float precision.

For the predictive performance tradeoff, the two hyperpa-
rameters are the number of centroids k and the method for
choosing the centers. Choosing the cluster centers for quanti-
zation can sometimes be a challenging task and many methods
have been proposed. In the traditional linear quantization the
clusters are chosen by evenly partitioning the range between
min and max weight values. We find that for our purpose, lin-
ear quantization yields adequate predictive performance results.
The reason is that it rounds many small parameter values to
zero, and preserves the larger weights that affect predictive per-
formance. If the cluster centers were designed to follow the dis-
tribution of parameter values (peaky distribution around zero),
this rounding effect would be smaller and the larger more im-
portant weights would also have less precision.

3.4. Perfect Hashing

Examining the total memory cost after quantization, we find
that theO(ns) term dominates the memory footprint. However,
at runtime, we can replace the full feature names set S using an
elegant application of perfect hashing.

A perfect hash function maps our set S of n keys into m
buckets with no collisions and better yet a minimal perfect hash
function (MPHF) hashes our set S of n keys into n buckets with
no collisions. If we had MPHF, then we just need to store an ar-
ray of quantized indices and at runtime use the MPHF to index
to the values of the parameters required for that instance. The
challange is to find a hash function that achieves no collisions,
is quick to evaluate, and requires little storage space. Here we
describe a method which achieves O(n) expected space and
O(n) expected construction runtime, which is a variation of the
method given in [22].

Before describing the algorithm, we assume that we have
access to a universal hash family from which we can draw
pseudo-random hash functions, i.e. there is a set of hash
functions h0, h1, h2, . . . where hi is the hash function with
seed i and each hi meets the simple uniform hashing as-
sumption (SUHA). SUHA states each element hashed has an
equal chance of being hashed to each bucket, meaning that
Pr [hi(x) mod m = `] = 1/m for all choices of i, x, and

` ∈ [0,m− 1]. We also assume computing hi(x) is linear in
the size of x. In practice, we implement this with a seeded
MurmurHash [23]. With these assumptions in place, in Algo-
rithm 1 we outline the procedure for constructing a minimal
perfect hash function from a set of keys.

Note that in Algorithm 1, we have a single unique 1 set for
each element of S through B1, B2, To find the hash of an
element x at runtime, we hash level by level until we hash to a
1. We then need to associate that 1 with a unique index in range

572

Algorithm 1 Minimal Perfect Hash Function Construction

1: Set S1 = S
2: for i = 0,1,3,.. do
3: Choose a hash function hi.
4: Initialize a bit array Bi of size |Si| to zeros.
5: Hash all x ∈ Si to range [0, |Si| − 1].
6: if single entry of Si gets hashed by hi to position j then
7: Set Bi[j] = 1.
8: end if
9: Set Si+1 = {x ∈ Si where Bi[j] 6= 1}.

10: if |Si+1| = 0 then
11: break
12: end if
13: end for

[0, n − 1]. This is done by viewing the bit arrays as one giant
bit array B = B1 ⊕ B2 ⊕ B3 ⊕ · · · concatenating the arrays
together and then assigning each 1 to its rank, i.e. the number
of 1’s preceding it in B. This defines our minimal perfect hash
function which we denote as h∗.

Concerning evaluation time, computing the rank can be
done efficiently by using what are known as succinct data struc-
tures [24, 25, 26]. We break B into chunks and store preaggre-
gate rank sums computed at the chunk level. To find the rank of
an index, we first look up the chunk level 1’s count for the chunk
containing the queried index. Then we linearly scan the contain-
ing chunk to compute the rank of the index inside the chunk. We
return these two numbers added together. We can theoretically
achieve constant time rank computation with a linear number
of extra bits by having a multilevel chunking scheme (chunks
within chunks). In practice, a simple one level scheme works
well, especially since using bitwise operations during the linear
scan of a chunk is particularly CPU cache efficient.

We now discuss how our minimum perfect hashing algo-
rithm affects predictive performance. For every element x ∈
S′ ∩ S, the algorithm will return the correct index of that pa-
rameter weight. However, the lookup algorithm for x ∈ S′ \ S
will either reach a 0 at the bottom level bit array, in which case
we know for certain the feature has a 0 weight associated with it,
or otherwise the x will collide with another arbitrary parameter.
This behavior is undesirable, and unless we explicitly store each
key, which we are trying to avoid, it is impossible to guarantee
no false-positives. However, we can reduce the false-positive
rate at the cost of a few extra bits per entry. The idea is to store
an extra array F of entry “fingerprints”. Given hash function
f , we store F [h∗(x)] = f(x) mod (1/ε) where ε is the de-
sired false-positive rate. The fingerprint length will be log(1/ε)
bits in length and by SUHA the likelihood that two entries have
matching fingerprints is ε. Hence to lookup a weight we take
the extra step of checking that its fingerprint matches. If the fin-
gerprint does not match we can report a weight of 0 and that the
parameter is not present in the model with 100% certainty. Oth-
erwise, we report the weight hashed to with 1− ε confidence.

From a space perspective, storing h∗ is small relative to
the original O(sn) cost of storing each of the keys. It can be
shown that h∗ will have size O(n) bits with high probability,
but in order for the MPHF algorithm to be effective for our
compression application, the hidden constant factors will need
to be small. For the statistical models we deal with which com-
monly have n ≥ 500, 000 parameters, the size of h∗ is less than
3.4 + log(1/ε) bits per entry.

We have addressed the predictive performance and space

tradeoffs of applying the perfect hashing technique, so we last
discuss the evaluation time tradeoff. We pay little extra in
lookup time to use the perfect hashing algorithm. The expected
evaluation time of h∗(x) for x ∈ U is O(s + log(1/ε)) with
a constant number of expected cache misses. Table 1 below
summarizes the tradeoffs discussed when applying the two tech-
niques, quantization and perfect hashing, for compressing the
models.

Table 1: Summary of compressed models tradeoff

Normal Compressed
Parameter Access Time O(s+ w) O(s+ w + log(1/ε))

Total Space O(n(s+ w)) O(n log(k/ε) + wk)

Predictive Performance
Impact

baseline granularity loss,
ε false-positive rate

4. Experimental Results
In this section we present experimental results using our com-
pression techniques. We apply them to large scale cloud NLU
models from six domains suitable for local voice-assistants,
such as temperature control and navigation. All of these models
have feature counts over 500,000 and many have beyond sev-
eral million. We first discuss the model size reduction and then
effect on the predictive performance.

Note that for skill NLU models the results are similar and
not provided here.

4.1. Compression

The compression results are given in Table 2. After applying
the model size reduction techniques, we see significant com-
pression rates compared to the normal statistical models. We
used hyperparameters of k = 256⇒ log k = 1 byte and false-
positive rate ε = 0.0001. We had experimented with varying
k but found k = 256 a desirable choice because it gave us ad-
equate predictive performance and is programmatically conve-
nient since each cluster index can be stored with a whole byte.
We achieve a significant 14.25-fold memory footprint reduction
(567.2 MB compared to 39.8MB) and for some models have a
compression ratio as high as a 31.5 (Domain 1 IC).

The MaxEnt DC total compression rate is lower that the
MaxEnt IC models, 12.3-fold vs. 24.7 fold. The reason is that
for the normal DC we use the feature hashing trick during train-
ing. Thus, instead of storing a map from string feature name
to feature id, we store a 32-bit integer hash to feature id map.
Since our DC models have millions of parameters, this integer
map takes significant memory, and using our approach reduces
the memory requirement for each key from 32-bit value to less
than 3.4 + log(1/ε).

The CRF NER total compression rate is around 10.8-fold,
which is lower than MaxEnt. The reason is that CRF models
have greater structural complexity than MaxEnt, and we need
to maintain additional information on state transitions and state
observation that we do not quantize and hash.

Without fingerprinting (ε = 1), we obtain 25.3-fold mem-
ory footprint reduction (567.2 MB compared to 22.4MB). This
is around 43% lower compared to ε = 0.0001. From Table 2,
we note that for IC and DC models the fingerprints consume
more than half of the memory. However, without fingerprint-
ing the false-positives from parameter access affect predictive
performance which is described in the next section.

573

Table 2: NLU statistical models sizes in megabytes. Normal vs. compressed (ε = 0.0001) vs. compressed* (ε = 1)

DC IC NER All
Normal Comp. Comp.* Normal Comp. Comp.* Normal Comp. Comp.* Normal Comp. Comp*

Domain 1 27.2 2.2 0.9 42. 1.3 0.4 14.0 1.5 1.2 83.2 5.0 2.5
Domain 2 25.8 2.1 0.9 65.4 1.4 0.5 86.9 7.6 5.5 178.1 11.1 6.9
Domain 3 13.1 1.1 0.4 0.6 0.1 0.002 1.0 0.2 0.1 14.7 1.4 0.5
Domain 4 10.9 0.9 0.4 9.5 0.6 0.2 2.5 0.4 0.3 22.9 1.9 0.9
Domain 5 25.3 2.0 0.9 25.7 1.3 0.5 84.7 7.4 5.6 135.7 10.7 7.0
Domain 6 51.5 4.1 1.7 64.8 3.7 1.3 16.4 1.9 1.6 132.6 9.7 4.6

Total 153.7 12.4 5.2 208.0 8.4 2.9 205.5 19.0 14.3 567.2 39.8 22.4

4.2. Predictive Performance

We evaluate model performance on two large test datasets with
hundreds of thousand annotated utterances:

• Supported Domains (SD) Test set: Contains utterances
from the six local supported domains.

• Out of Domain (OOD) Test set: This includes utterances
that do not map to any intent or background noise.

We use the following evaluation metrics:
• Slot Error Rate (SER) [27] is a slot level metric that evalu-

ates the over all predictive performance of the models. SER
is defined as the ratio of the number of slot prediction errors
to the total number of reference slots. Errors could be in-
sertions, substitutions and deletions. Intent misrecognitions
are considered substitutions.

• Intent Classification Error Rate (ICER) utterance level met-
ric. ICER is defined as the ratio of the number of intent
misclassifications to the total number of utterances.

• F-ICER is a balanced ICER metric that considers both pre-
cision and recall. We compute it as 1 - F1 score.

• Rejection Rate is defined as the percentage of utterances
with scores below a set threshold. Below threshold utter-
ances are rejected by the system.

An NLU system ideally has a low SER and ICER/F-ICER on
the SD test set indicating good model predictive performance
and a high rejection rate on the OOD test set indicating that out
of domain utterances are rejected.

Table 3 details the overall performance measures and Table
4 details the per domain performance measures. The results are
percentage relative compared to the normal models, as we are
unable to disclose absolute numbers.

As shown from the results, our compressed models perform
almost as well as our baseline models with acceptable over-
all relative error increases of +0.86% in SER and +0.26% in
ICER. The per domain compressed results show small F-ICER
increase of less than +1% except Domain 3 with +1.58%. The
reason is that Domain 3 IC model has a small number of promi-
nent features and false-positive on important features are more
common.

The ultra compressed models without fingerprinting (ε =
1) have overall relative error increases of +2.20% in SER and
+3.14% in ICER. The per domain relative error increases are
around +2% to +3% F-ICER for most domains. The error rates
of the ultra compressed models are higher than the compressed
models with fingerprinting. However, for the relative error in-
crease of around +1 to +2%, we obtain total 25.3-fold memory
reduction compared to 14.25-fold. Thus, compression without
fingerprinting could be a viable option depending on the mem-
ory constraints and predictive performance requirements.

Table 3: Overall predictive performance measures for NLU sta-
tistical models.

Model SD Dataset OOD Dataset
SER ICER Rejection Rate

Compressed +0.86% +0.26% -0.08%
Compressed* +2.20% +3.14% -0.72%

Table 4: Domain predictive performance measures for NLU sta-
tistical models on the SD test set.

Domain Compressed Compressed*
F-ICER F-ICER

Domain 1 +0.01% +2.33%
Domain 2 +0.74% +2.36%
Domain 3 +1.58% +8.94%
Domain 4 +0.01% +1.75%
Domain 5 +0.32% +1.59%
Domain 6 +0.20% +3.15%

Note that the reason why using no fingerprinting performs
adequately is because when we get a false-positive, it is not as
if an adversarial index is hashed and the system is guaranteed
to make an incorrect prediction. Rather, when a false-positive
is realized, we actually are hashing to a random existing model
parameter each with equal probability. Since majority of our pa-
rameters are close to zero, the false-positives add small amount
of noise to the predictions.

5. Conclusion
In this paper we presented approaches to reduce the mem-
ory footprint of NLU statistical models to work on resource-
constrained embedded systems, and decrease latency of loading
skill NLU models. We demonstrated the effectiveness of our
techniques in reducing memory footprint while addressing the
the tradeoffs of time, space, and predictive performance. We ob-
served the methods sacrifice minimally in terms of model eval-
uation time and predictive performance for the substantial com-
pression gains observed. It would be interesting to go beyond
the results of Section 3.3 to see if there is a better quantization
scheme for our models.

6. References
[1] R. Sarikaya, “The technology behind personal digital assistants:

an overview of the system architecture and key components,”
IEEE Signal Processing Magazine, vol. 34, no. 1, pp. 67–81,
2017.

[2] M. Locklear, “Panasonic and Alexa Onboard bring

574

offline voice control to your car,” 2018. [On-
line]. Available: https://www.engadget.com/2018/01/08/
panasonic-alexa-onboard-offline-voice-control-vehicle/

[3] A. Kumar, A. Gupta, J. Chan, S. Tucker, B. Hoffmeister, and
M. Dreyer, “Just ask: Building an architecture for extensi-
ble self-service spoken language understanding,” arXiv preprint
arXiv:1711.00549, 2017.

[4] A. L. Berger, V. J. D. Pietra, and S. A. D. Pietra, “A maximum
entropy approach to natural language processing,” Computational
linguistics, vol. 22, no. 1, pp. 39–71, 1996.

[5] J. Lafferty, A. Mccallum, F. C. N. Pereira, and F. Pereira,
“Conditional random fields: probabilistic models for segmenting
and labeling sequence data,” 18th International Conference on
Machine Learning (ICML 2001), pp. 282–289, 2001. [Online].
Available: http://repository.upenn.edu/cis{ }papers

[6] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Quantized neural networks: training neural networks with
low precision weights and activations,” 2016.

[7] S. Han, H. Mao, and W. J. Dally, “Deep compression: compress-
ing deep neural networks with pruning, trained quantization and
huffman coding,” 2015.

[8] G. Tucker, M. Wu, M. Sun, S. Panchapagesan, G. Fu, and S. Vita-
ladevuni, “Model compression applied to small-footprint keyword
spotting.” in INTERSPEECH, 2016, pp. 1878–1882.

[9] M. Sun, D. Snyder, Y. Gao, V. Nagaraja, M. Rodehorst, N. S.
Panchapagesan, S. Matsoukas, and S. Vitaladevuni, “Compressed
time delay neural network for small-footprint keyword spotting,”
Proc. Interspeech 2017, pp. 3607–3611, 2017.

[10] D. Talbot and T. Brants, “Randomized language models via per-
fect hash functions,” Proceedings of ACL-08: HLT, pp. 505–513,
2008.

[11] X. Lei, A. W. Senior, A. Gruenstein, and J. Sorensen, “Accurate
and compact large vocabulary speech recognition on mobile de-
vices.” in Interspeech, vol. 1. Citeseer, 2013.

[12] Y. Wang, J. Li, and Y. Gong, “Small-footprint high-performance
deep neural network-based speech recognition using split-vq,” in
Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE
International Conference on. IEEE, 2015, pp. 4984–4988.

[13] I. McGraw, R. Prabhavalkar, R. Alvarez, M. G. Arenas, K. Rao,
D. Rybach, O. Alsharif, H. Sak, A. Gruenstein, F. Beaufays et al.,
“Personalized speech recognition on mobile devices,” in Acous-
tics, Speech and Signal Processing (ICASSP), 2016 IEEE Inter-
national Conference on. IEEE, 2016, pp. 5955–5959.

[14] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and
T. Mikolov, “Fasttext. zip: Compressing text classification mod-
els,” arXiv preprint arXiv:1612.03651, 2016.

[15] K. Ganchev and M. Dredze, “Small statistical models by random
feature mixing,” in Proceedings of the ACL-08: HLT Workshop
on Mobile Language Processing, 2008, pp. 19–20.

[16] K. Weinberger, A. Dasgupta, J. Attenberg, J. Langford, and
A. Smola, “Feature hashing for large scale multitask learning,”
Proceedings of the 26th Annual International Conference on Ma-
chine Learning (ICML), pp. 1113–1120, 2009.

[17] S. Dasgupta, “Experiments with random projection,” Sixteenth
Conference on Uncertainty in Artificial Intelligence (UAI00), pp.
143–151, 2000.

[18] E. Bingham and H. Mannila, “Random projection in dimension-
ality reduction: applications to image and text data,” Proceedings
of the seventh ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD 01), pp. 245–250, 2001.

[19] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimension-
ality of data with neural networks,” Science, vol. 313, no. 5786,
pp. 504–507, 2006.

[20] A. Ng, “Sparse autoencoder,” Stanford CS294A Lecture notes,
2011.

[21] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,”
Advances in Neural Information Processing Systems (NIPS 1989),
1989.

[22] A. Limasset, G. Rizk, R. Chikhi, and P. Peterlongo, “Fast and scal-
able minimal perfect hashing for massive key sets,” arXiv, 2017.

[23] A. Horvath, “MurMurHash3, an ultra fast hash algorithm for C# /
.NET,” 2012.

[24] G. J. Jacobson, “Succinct static data structures,” Ph.D. disserta-
tion, Carnegie Mellon University, 1988.

[25] R. Raman, V. Raman, and S. S. Rao, “Succinct indexable dictio-
naries with applications to encoding k-ary trees and multisets,”
Proceedings of the Thirteenth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 233–242, 2002.

[26] D. K. Kim, J. C. Na, J. E. Kim, and K. Park, “Efficient implemen-
tation of rank and select functions for succinct representation,”
Proceedings of the 4th international conference on Experimental
and Efficient Algorithms (WEA), pp. 315–327, 2005.

[27] J. Makhoul, F. Kubala, R. Schwartz, R. Weischedel et al., “Per-
formance measures for information extraction,” in Proceedings of
DARPA broadcast news workshop. Herndon, VA, 1999, pp. 249–
252.

575

