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Abstract
We propose stochastic Shake-Shake regularization based on
multi-branch residual architectures to mitigate over-fitting in af-
fective learning from speech. Inspired by recent Shake-Shake
[1] and ShakeDrop [2] regularization techniques, we introduce
negative scaling into the Shake-Shake regularization algorithm
while still maintain a consistent stochastic convex combination
of branches to encourage diversity among branches whether
they are scaled by positive or negative coefficients. In addi-
tion, we also employ the idea of stochastic depth to randomly
relax the shaking mechanism during training as a method to
control the strength of regularization. Through experiments on
speech emotion recognition with various levels of regularization
strength, we discover that the shaking mechanism alone con-
tributes much more to constraining the optimization of network
parameters than to boosting the generalization power. How-
ever, stochastically relaxing the shaking regularization serves
to conveniently strike a balance between them. With a flexible
configuration of hybrid layers, promising experimental results
demonstrate a higher unweighted accuracy and a smaller gap
between training and validation, i.e. reduced over-fitting, and
shed light on the future direction for pattern recognition tasks
with low resource.
Index Terms: Stochastic Shake-Shake Regularization,
Stochastic Depth, Adversarial Training, Affective Computing,
Speech Emotion Recognition

1. Introduction
Deep convolutional neural networks have been successfully ap-
plied to several pattern recognition tasks such as image recog-
nition [3], machine translation [4] and speech recognition [5].
Currently, to successfully train a deep neural network, one
needs either a sufficient number of training samples to implic-
itly regularize the learning process, or employ techniques like
weight decay and dropout [6] and its variants to explicitly keep
the model from over-fitting.

In the recent years, one of the most popular and successful
architectures is the residual neural network (ResNet) [3]. The
ResNet architecture was designed based on a key assumption
that it is more efficient to optimize the residual term than the
original task mapping. Since then, a great deal of effort in ma-
chine learning and computer vision has been dedicated to study-
ing the multi-branch architecture.

Deep convolutional neural networks have also gained much
attention in the community of affective computing [7] and hu-
man behavioral signal processing [8] mainly because of its out-
standing ability to formulate discriminative features for the top-
layer classifier [9, 10]. Usually the number of parameters in
a model is far more than the number of training samples and
thus it requires either effective data augmentation [10] or heavy
regularization to train deep neural networks for affective com-
puting. However, since the introduction of batch normalization
[11], the gains obtained by using dropout for regularization have
decreased [11, 12, 13]. Yet, architectures which consist of mul-
tiple branches, for example the ResNeXt architecture [14], or

stochastic depth [13] have emerged as a promising alternative.
Regularization techniques based on multi-branch architec-

tures such as Shake-Shake regularization [1] have delivered an
impressive performance on standard image datasets including
the CIFAR-10 [15]. In a clever way, Shake-Shake regulariza-
tion utilizes multiple branches to learn different aspects of the
relevant information and then a summation in the end follows
to enforce information alignment among branches, in which it
has been shown that specializing each branch to learn a certain
amount of complementary information helps to alleviate over-
fitting. Training a very deep neural network often suffers from
a number of issues, including loss in the information flow in
forward propagation and gradient vanishing. To address these
issues, training deep neural networks with stochastic depth [13]
reduces the network depth in expectation and thus facilitates ef-
ficient training while exploits expressiveness by the full depth
at testing time. Recently, ShakeDrop regularization [2] applied
stochastic scaling, even with negative coefficients, to forward
and backward propagations in training a deep Pyramidal ResNet
[16]. Stochastic depth with a linear decay rule was employed in
ShakeDrop regularization to stabilize learning because of sen-
sitivity to the survival probability.

In this work, we propose stochastic Shake-Shake regular-
ized ResNeXt, complementary to the ShakeDrop on a deep
Pyramidal ResNet [2]. The convex combination is key to
the very success of Shake-Shake regularization for it forces
branches to learn independent information [1]. To preserve this
feature, we extend Shake-Shake regularization to incorporate
negative scaling while still maintain a consistent stochastic con-
vex combination of its branches. Second, similar to [13, 2],
we employ stochastic relaxation as a straightforward method
to control the strength of shaking when regularizing training in
practice. Third, we demonstrate the applicability of stochas-
tic Shake-Shake regularization on a much shallower network,
compared to the deep Pyramidal ResNet of 272 layers in [2],
for speech emotion recognition. The promising experimental
results highlight the ability of the proposed model to nicely ad-
dress the data sparsity issue in deep learning for affective com-
puting.

In addition to the novelty aforementioned, the major con-
tribution in this work lies in the identification of the shaking
mechanism with its ability to constrain the learning process. We
show via experiments on a shallow architecture that without re-
laxation, the shaking mechanism leads to significant over-fitting
reduction but contributes little to the improvement of the gener-
alization performance. On the other hand, we find the survival
probability in stochastic relaxation convenient to trade off be-
tween over-fitting reduction and generalization power improve-
ment. With a flexible configuration of hybrid layers, we present
a model that is close to the sweet spot to strike a balance.

2. Related Work
2.1. Shake-Shake Regularization
Shake-Shake regularization [1] is a recently proposed technique
to regularize training of deep convolutional neural networks for
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image recognition tasks. This regularization technique based
on multi-branch architectures promotes stochastic mixtures of
forward and backward propagations from network branches in
order to create a flow of model-based adversarial learning sam-
ples/gradients during the training phase. Owing to it excellent
ability to combat over-fitting even in the presence of batch nor-
malization, the Shake-Shake regularized 3-branch residual neu-
ral network [1] has achieved one of current state-of-the-art per-
formances on the CIFAR-10 image dataset.

An overview of a 3-branch shake-shake regularized
ResNeXt is depicted in Fig. 1. In addition to the short-cut
flow (in light gray), there are other two residual branches B(x),
each of them consisting of a sequence of layers stacked in order:
Batch Normalization, ReLU, ConvH ×W , Batch Normaliza-
tion, ReLU, ConvH × W , where ConvH × W represents a
convolutional layer with filters of size H ×W and ReLU is the
rectified linear unit ReLU(x) = max(0, x).

Shake-Shake regularization adds to the aggregate of the
output of each branch an additional layer, called the Shaking
layer, to randomly generate adversarial flows in the following
way:

ResBlockN (X) = X+
N∑

n=1

Shaking
(
{Bn(X)}Nn=1

)

where in the forward propagation for a = [α1, · · · , αN ] sam-
pled from the (N−1)-simplex (Fig. 1 (a))

ResBlockN (X) = X+
N∑

n=1

αnBn(X),

while in the backward propagation for b = [β1, · · · , βN ] sam-
pled from the (N−1)-simplex and g the gradient from the top
layer, the gradient entering into Bn(x) is βng (Fig. 1 (b)). At
testing time, the expected model is then evaluated for inference
by taking the expectation of the random sources in the architec-
ture (Fig. 1 (c)).
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Figure 1: An overview of a 3-branch shake-shake regularized
residual block. (a) Forward propagation during the training
phase (b) Backward propagation during the training phase (c)
Testing phase. The coefficients α and β are sampled from the
uniform distribution over [0, 1] to scale down the forward and
backward flows during the training phase.

2.2. ShakeDrop Regularization
Deep Pyramidal ResNet [16] was designed to uniformly dis-
tribute the burden concentrated at the down-sampling location
in the ResNet [3] by gradually increasing the number of chan-
nels in each layer along the depth of the network. A deep Pyra-
midal ResNet that consists of 272 layers has demonstrated fur-
ther improvement over the vanilla ResNet for image recogni-
tion. Other than the number of channels, the l-th residual block

(ResBlockl) in a Pyramidal ResNet is formulated in the same
way as a vanilla ResNet:

ResBlockl(Xl) = Xl +Bl(Xl). (1)

In addition, training a very deep, up to 1200 layers, ResNet
with stochastic depth [13] by randomly skipping a ResBlock
also brings improvement on the CIFAR-10 dataset:

ResBlockl(Xl) = Xl + blBl(Xl), (2)

where bl is a Bernoulli random variable with P (bl = 1) = pl
and P (bl = 0) = 1−pl. A linear decay rule for pl is suggested
over the uniform rule

pl = 1− l

L
(1− pL), (3)

where L is the number of layers and pL is a fixed hyper-
parameter for the L-th layer.

Recently, ShakeDrop regularization [2] proposed to apply
scaling on the forward and backward propagations in training a
deep Pyramidal ResNet:

ResBlockl(Xl) = Xl + αlBl(Xl), (4)

where αl is an uniform random variable for scaling the forward
propagation. Unfortunately, Eq. (4) leads to instability during
training. The authors used stochastic depth to overcome this
instability and formulated it as

ResBlockl(Xl) = Xl + (bl + αl − blαl)Bl(Xl) (5)

=

{
Xl +Bl(Xl) if bl = 1.

Xl + αlBl(Xl) if bl = 0.

Moreover, the ShakeDrop regularized Pyramidal ResNet
achieved a significant improvement on image recognition when
the forward scaling coefficients αl was sampled from a uniform
distribution over [−1, 1] instead of [0, 1].

However, since the Pyramidal ResNet model and stochastic
depth are specifically related to very deep architectures, it re-
mains unknown whether the gain by the combination of stochas-
tic depth and negative scaling can translate to shallow networks
for affective computing from speech.

3. Stochastic Shake-Shake Regularization
Since Shake-Shake regularization has demonstrated nice prop-
erties such as actively encouraging model-based diversity
among branches, it would be worthwhile to keep the con-
vex combination of branches when adding negative scaling to
Shake-Shake regularization. In forward propagation, we for-
mulate it by

ResBlockN
l (Xl) = Xl + sl

N∑

n=1

Shaking
(
{Bnl(Xl)}Nn=1

)

= Xl + sl

N∑

n=1

αnlBnl(Xl)

where sl is a Bernoulli random variable with P (sl = 1) =
P (sl = −1) = 0.5 and al = [α1l, · · · , αNl] is sampled from
the (N−1)-simplex. Furthermore, we employ stochastic depth
to bring more complexity into the architecture and it becomes

ResBlockN
l (Xl) = Xl + sl

N∑

n=1

(bl + αnl − blαnl)Bnl(Xl),
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where bl is a Bernoulli random variable with P (bl = 1) = pl.
For a 3-branch stochastic Shake-Shake regularized

ResNeXt, it could be further simplified as

ResBlock2
l (Xl) = Xl + c1lB1l(Xl) + c2lB2l(Xl), (6)

where

c1l = bl + α1l − blα1l,

c2l = bl + sgn(α1l)− α1l − bl(sgn(α1l)− α1l), (7)

and sgn(x) returns the sign of x.
Here we deliberately maintain a consistent stochastic con-

vex combination of residual branches by applying a random
sign to the sampled vector a and keep the nice property inher-
ited from Shake-Shake regularization. What we have done is to
decompose the αl in ShakeDrop regularization into its sign and
absolute value and represent them respectively by new random
variables sl and {αnl} for stochastic Shake-Shake regulariza-
tion. The scaling coefficients βnl for backward propagations
can also be extended in a similar approach to incorporate nega-
tive value.

To demonstrate the effectiveness, we propose to benchmark
the following models.

1. Baseline: A 3-branch ResNeXt that consists of 5 convo-
lutional layers with

pl = 1.0

for every Shaking layer.

2. Shake-Shake regularized 3-branch ResNeXt with

pl = 0.0, sl = 11

for every Shaking layer.

3. Stochastic Shake-Shake regularized 3-branch
ResNeXt with

pl = 1− l

L
(1− pL)

for every Shaking layer, where pL = 0.50.

4. Hybrid stochastic Shake-Shake regularized 3-branch
ResNeXt

(a) with p1 = 0.50, p2 = 0.0, s2 = 1

(b) with p1 = 0.75, p2 = 0.0, s2 = 1

For all of the proposed models, we constrain βnl to be sampled
uniformly from [0, 1] for simplicity.

The first three models have been covered in the previous
two sections; however, during experiments we found that hy-
brid models with a mixture of different shaking mechanisms
provide more flexibility and hence we present the last two mod-
els to showcase the advantage and compare them with the first
three models. In particular, Model 4 has stochastic Shake-Shake
regularization at the output of the first ResBlock, where Model
4(a) has p1 = 0.5 and Model 4(b) has p1 = 0.75, and regular
Shake-Shake regularization, in particular with s2 = 1, at the
output of the second ResBlock.

1Although we write sl = 1, what we actually control during exper-
iments is the range for αnl.

4. Experiments
4.1. Datasets
We use six publicly available emotion corpora to demonstrate
the effectiveness of the proposed models, including the eN-
TERFACE’05 Audio-Visual Emotion Database [17], the Ry-
erson Audio-Visual Database of Emotional Speech and Song
(RAVDESS) [18], the Interactive Emotional Dyadic Motion
Capture (IEMOCAP) database [19], the Berlin Database of
Emotional Speech (Emo-DB) [20], the EMOVO Corpus [21]
and the Surrey Audio-Visual Expressed Emotion (SAVEE) [22].
Some of these corpora are multi-modal in which speech, facial
expression and text all convey a certain degree of affective infor-
mation. However, in this paper we solely focus on the acoustic
modality for experiments.

Corpus No. No. Utterances
Actors joy anger sadness fear

eNTERFACE 42 207 210 210 210
RAVDESS 24 376 376 376 376
IEMOCAP 10 720 1355 1478 0
Emo-DB 10 71 127 66 69
EMOVO 6 84 84 84 84
SAVEE 4 60 60 60 60
Total 96 1518 2212 2274 799

Table 1: An overview of these selected corpora, including the
number of actors and the distribution of utterances in the emo-
tional classes.

We formulate the experimental task into a sequence clas-
sification of 4 classes, including joy, anger, sadness and fear.
We perform sub-utterance sampling [23] by dividing long utter-
ances into several short segments of 6.4-second long with the
same label to limit the length of the longest utterance; for exam-
ple, a 10-second long angry utterance is replaced by two angry
segments corresponding to the first 6.4 and the last 6.4 seconds
of the original utterance with some overlapping part. In this
way, we also slightly benefit from data augmentation. As a re-
sult, we obtain 6803 emotional utterances from the aggregated
corpora. Table 1 summarizes the information about these six
corpora. For the evaluation, we adopt a 4-fold cross validation
strategy by splitting the actor set and maintain the distribution
as gender and corpus uniform as possible, similar to [24].

4.2. Experimental Setup

We extract the spectrograms of each utterance with a 25ms win-
dow for every 10ms using the Kaldi [25] library. Cepstral mean
and variance normalization is then applied on the spectrogram
frames per utterance. To equip each frame with a certain con-
text, we splice it with 10 frames on the left and 5 frames on the
right. Therefore, a resulting spliced frame has a resolution of
16 × 257. Since emotion involves a longer-term mental state
transition, we further down-sample the frame rate by a factor of
8 to simplify and expedite the training process.

We establish a baseline of 3-branch ResNeXt that consists
of only 5 convolutional layers and list the details in Table 2. For
each utterance, a simple mean pooling is taken at the output of
the residual block to form an utterance representation before it
is transformed by the fully connected layers. We avoid explicit
temporal modeling layers such as a long short-term memory re-
current network because our focus is to investigate the effective-
ness by shaking the ResNe(X)t. Note that a Shaking layer has
no parameter to learn and hence the model size does not change
during this work. We implement the Shaking layer as well as
the entire network architecture using the PyTorch [26] library.
Only the Shake-Shake combination [1] is used and shaking is
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Models Layers No. Params
3-Branch Conv(4,2,16) + 34.3 K
ResNeXt (Shortcut, Branch(64)× 2) +

[w/ shake reg.] [Shaking+]
(Shortcut, Branch(128)× 2) +

[Shaking+]
Mean-Pooling +

Dropout(0.5) + ReLU +
Linear(4)

Branch(F ) BatchNorm + ReLU +
Conv(4,2,F ) +

BatchNorm + ReLU +
Conv(4,2,F )

Table 2: Network architecture, layers and the number of pa-
rameters in the baseline and proposed models. BatchNorm
stands for batch normalization, ReLU for the rectified linear
unit, Conv(N,H,W ) for a 2D convolutional layer with N
filters of size H × W , Dropout(p) for dropout with a drop-
ping probability of p and Linear(N) for a fully connected layer
withN nodes. The Mean-Pooling layer represents the temporal
pooling for generating an utterance representation.

applied independently per frame. As a preliminary study, we
leave other combinations for future work. Due to class imbal-
ance in the aggregated corpora, the objective function for train-
ing is the weighted cross-entropy, where the class weight is in-
versely proportional to the class size. The models are learned
using the Adam optimizer [27] with an initial learning rate of
0.001 and the training is carried out on an NVIDIA Tesla K80
GPU. We use a mini-batch of 64 utterances across all model
training and let each experiment run for 300 epochs.

4.3. Experimental Results

Table 3 summarizes the statistics from experiments to bench-
mark the proposed models, including the un-weighted accuracy,
UA (%), the performance gap between training and validation
UAs, and the number of epochs required to achieve the opti-
mal UA. All of these numbers are averaged over four-fold cross
validation for an estimate.

Model UA Gap Epoch
1 59.27 8.52 58.75
2 59.74 1.69 220
3 57.26 −2.76 166.5

4(a) 59.13 −1.03 159.25
4(b) 60.87 3.72 225.5

Table 3: Summary of the evaluations on the proposed models.

First of all, we observe that two models, the ones based
on Shake-Shake regularization (Model 2) and a hybrid shaking
mechanism (Model 4(b)), outperform the baseline by a respec-
tive margin of 0.47% and 1.6%. In addition, Model 4(a) also
gives a performance comparable to the baseline. Model 3, on
the other hand, degrades the performance by a margin of 2.01%.

Second, compared to the performance gap between train-
ing and validation by the baseline, all of the shaking regular-
ized models have achieved a much smaller gap. It appears that
shaking regularization contributes more on constraining the op-
timization of model parameters than boosting the generalization
power. In fact, the authors in [2] also reported that with shak-
ing regularization the training loss is much larger than zero in
the end of 300-epoch or 1800-epoch training, whereas a deep
Pyramidal ResNet can reach almost zero in the end of training.
By benchmarking Model 2 and Model 3, one can easily infer

that negative scaling has introduced a much stronger strength of
regularization which instead hurts the optimization. In Model 4,
negative scaling only applies to the first shaking layer. By con-
trolling the survival probability to relax shaking, Model 4(a)
and Model 4(b) both achieve a competitive performance and
maintain a smaller gap.

Metric\Model 2 3 4(a) 4(b)
UA 0.291 0.916 0.594 0.061
Gap 0.001 0.003 0.004 0.040

Table 4: P-values for statistical hypothesis test of improvement
with respect to the baseline (Model 1).

To gain more insight into the the experimental results in
Table 3, we perform one-sided paired t-test (df=3) between the
baseline and each of the shaking regularized models. In Table
4, it is clear that the shaking mechanism helps to significantly
reduce GAP, i.e. reduced over-fitting. Based on the statisti-
cal analysis of UA by Model 2, one may observe that applying
shaking alone only leads to insignificant improvement of gen-
eralization performance. However, with a flexible configuration
of hybrid layers, Model 4 delivers a significant improvement of
UA and Gap with respective 90% and 95% confidence. The
correlation between residual branches are presented in Table 5.
Except for Model 3 and 4(a), residual branches are able to cap-
ture independent information as observed in [1]. These highly
correlated branches in Model 3 and 4(a) may suitably explains
their under-performing behaviors as well.

Block\Model 1 2 3 4(a) 4(b)
1 -0.025 0.045 0.079 0.719 -0.066
2 0.046 -0.036 0.612 0.064 0.033

Table 5: Correlation between branches.

Finally, we find that all of the shaking regularized models
converges at a slower speed. In particular, the baseline took
an average of 58.75 epochs to search for the optimal network
parameters, while all other models generally spent several mul-
tiples of the number of epochs that the baseline took. We did
not use early stopping in this work. Nevertheless, these results
suggest when using early stopping in training, one should pay
more patience in optimizing the model parameters of a shaking
regularized model.

5. Conclusions
We proposed stochastic Shake-Shake regularization based on
multi-branch architectures to mitigate over-fitting in affective
learning from speech. Stochastic Shake-Shake regulariza-
tion allows negative scaling while still maintains a consistent
stochastic convex combination of branches in order to encour-
age model-based diversity among branches. However, multiply-
ing flow of forward propagation with a negative scalar incurs a
much stronger strength of regularization that effectively hinders
the optimization of network parameters. We found that ran-
domly relaxing the shaking mechanism conveniently serves to
control the regularization strength. Arguably, it would be more
usable in practice than adjusting the range of random variables
αnl or βnl as investigated in [1]. Finally, we have demonstrated
that a stochastic Shake-Shake regularized 3-branch ResNeXt
outperforms the ResNeXt for speech emotion recognition by a
clear margin of 1.6% with reduced over-fitting, from which one
can infer stochastic depth and negative scaling are also applica-
ble to shallow networks and speech related tasks.
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