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Abstract 

The automatic assessment of speech is a powerful tool in 

computer aided speech therapy for disorders such as 

Childhood Apraxia of Speech (CAS). However, the lack of 

sufficient annotated disordered speech data seriously impedes 

the accurate detection of pronunciation errors. To handle this 

deficiency, in this paper, we used the novel approach of 

tackling pronunciation verification as an anomaly detection 

problem. We achieved this by modeling only the correct 

pronunciation of each individual phoneme with a one-class 

Support Vector Machine (SVM) trained using a set of speech 

attributes features, namely the manner and place of 

articulation. These features are extracted from a bank of pre-

trained Deep Neural Network (DNN) speech attributes 

classifiers. The one-class SVM model classifies each phoneme 

production as normal (correct) or an anomaly (incorrect). We 

evaluated the system using both native speech with artificial 

errors and disordered speech collected from children with 

apraxia of speech and compared it with the DNN Goodness of 

Pronunciation (GOP) algorithm. The results show that our 

approach reduces the false-rejection rates by around 35% 

when applied to disordered speech. 

Index Terms: pronunciation verification, disordered speech, 

one class SVM, deep learning, speech attributes. 

1. Introduction 

Childhood Apraxia of Speech (CAS) is a neurological speech 

disorder that affects a child's ability to make accurate 

movements for speech. Children with CAS suffer from 

different types of pronunciation difficulties such as 

inappropriate prosody, articulatory struggling and inconsistent 

speech sound production [1]. In this work we focus on using 

phoneme-level pronunciation verification to automatically 

detect the inconsistencies in the child’s production for use in 

remote speech therapy systems. However, the accuracy of the 

automatic methods used to verify the correctness of 

pronunciation is crucial, as inaccurate verification can lead to 

misleading feedback causing delay in the treatment. 

A number of different approaches have been proposed to 

achieve pronunciation verification. The most widely used of 

these is lattice-based mispronunciation detection, which works 

by constructing a lattice with the correct pronunciation and the 

most common pronunciation errors. In [2], a specific 

phoneme-level lattice for each prompt word was generated 

using the correct phoneme sequence with expected 

mispronunciations added as alternatives for use in learning the 

pronunciation of Quranic Arabic. Similar approaches have 

been applied to speech therapy [3] and second language 

acquisition [4]. In our previous work [5] we enhanced the 

accuracy of a lattice-based pronunciation verification method 

for disordered speech by using a Deep Neural Network 

Hidden Markov Model (DNN-HMM) acoustic model instead 

of the traditional Gaussian Mixture Hidden Markov Model 

(GMM-HMM) acoustic model. Most recently, Li et al. [6] 

introduced the acoustic-graphemic-phonemic model (AGPM) 

by combining the acoustic features along with the graphemes 

and canonical transcription in one multi-distribution DNN 

model. However, these methods are effective only as long as 

the errors fall within the probable pronunciation variants in the 

search lattice; their performance is degraded when unexpected 

pronunciation errors occur. Another issue is that a large 

amount of mispronunciation data is needed to accurately 

model possible errors, which is usually infeasible.  

Another approach measures the confidence score of the 

pronunciation and compares it to a threshold to decide whether 

the pronunciation is correct or not. In [7], the authors 

compared the correlation of three different scores, namely the 

log-likelihood score, the segment duration score and the log-

posterior probability score, with manual assessments; the best 

accuracy was achieved with the posterior probability score. 

The most common score used however is the so-called 

Goodness of Pronunciation (GOP) introduced by Witt and 

Young [8]. This score is computed by estimating the 

phoneme-level posterior probability via the output of a 

phoneme-loop recognizer based on the HMM acoustic model. 

The GOP has become a de-facto standard for measuring 

pronunciation quality and implemented in a vast number of 

applications including disordered speech [9-12].  

Phoneme-level pronunciation error detection has also been 

achieved using binary classifiers where each phoneme is 

classified as either “correct” or “incorrect”. Support Vector 

Machine (SVM) binary classifiers have been used widely [13-

16] and shown to outperform the likelihood-based methods. 

Other classifiers such as Linear Discriminative Analysis 

(LDA) and decision tree have also achieved acceptable 

accuracy [17]. Despite the significant improvements obtained 

by these classifiers over the GOP algorithm, they are highly 

dependent on the availability of sufficient annotated 

mispronunciations to form negative samples used in the 

training of the binary classifier. Moreover, human labeling of 

non-native speech data in general, and disordered speech  

specifically, is more challenging than native speech data [18, 

19], which adds an additional source of error in the data used 

to train the mispronunciation detector. 

In this paper, we use the novel approach of casting the 

phoneme-level pronunciation verification problem as an 

anomaly detection problem. To handle the lack of sufficient 

mispronounced training data, we propose modelling each 

phoneme with a One-Class Support Vector Machine 

(OCSVM). Using a one-class model instead of typical multi-

class models allows each phoneme model to be trained using 

only correctly pronounced data. The input features to the 

OCSVM represent the manner and place of articulation 

attributes of the phoneme derived from a set of speech 

attribute detectors based on binary DNN classifiers. The 

OCSVM learns the distribution of the phoneme attributes and 
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then evaluates any input unseen speech segment by measuring 

its similarity with the phoneme model and deciding if it is 

similar (normal) or dissimilar (anomaly). To demonstrate the 

effectiveness of the algorithm we applied it on two speech 

corpora collected from typically developing (TD) children and 

children with CAS and compared it to the DNN GOP 

algorithm, the most common and well-proven pronunciation 

verification technique. 

2. Method 

2.1. System overview 

Figure 1 presents a flowchart of our proposed system. First, a 

set of acoustic features are extracted from the speech signal 

and then passed to the forced alignment module along with the 

expected phoneme sequence. We use DNN-HMM acoustic 

models trained with Mel-Frequency Cepstral Coefficients 

(MFCC) features plus the delta and acceleration coefficients to 

perform forced alignment. Forced alignment is used to 

determine the time boundaries of each phoneme. Each 

phoneme is then mapped to its corresponding speech attributes 

and used to train a bank of speech attribute DNN binary 

classifiers. The trained speech attributes classifiers are used to 

extract a speech attribute feature vector from each frame that 

represents the likelihood it belongs to each attribute. 

The frames of each phoneme are then converted to their 

corresponding speech attribute features and then used to train 

a phoneme-specific OCSVM model. In the testing mode, each 

frame is evaluated as correctly pronounced if it is classified by 

the OCSVM as correct (in-class) and evaluated as incorrectly 

pronounced if detected as an anomaly (out-of-class) 

 

Figure 1: The system flowchart. 

2.2. Speech attributes classifier 

Each phoneme can be characterized by a set of attributes 

describing its manners and places of articulation. The 

detection of a phoneme’s speech attributes is a well-known 

problem with different applications such as in, bottom-up 

automatic speech recognition system [20], identification of 

spoken language [21], lattice rescoring for LVSR [22] and 

universal phoneme recognition [23]. Recent work on speech 

attribute detection using DNNs has shown to significantly 

improve their performance [24].  

In this paper we adopted 26 speech attributes as listed in 

Table 1 [20]. The phoneme-attribute mapping is adopted from 

[25]. A binary DNN classifier is trained to determine the 

existence or the absence of each individual attribute. The 

DNN consists of an input layer, output layer and a tunable 

number of hidden layers. The size of the input layer depends 

on the size of the input feature vector. From each frame of 25 

msec length, we extracted a 78-feature vector consisting of 26 

log filter bank energies along with their respective delta and 

acceleration coefficients. We then concatenated each of these 

vectors with four vectors on either side to form one super-

vector input of size 702 that captures context variation. 

Finally, a two-way softmax layer lies on the top of the DNN 

estimating the posterior probabilities of the presence (+ve) and 

absence (-ve) of the attribute. Data from all phonemes sharing 

the same attribute are used as (+ve) samples while data from 

all other phonemes as (-ve) samples. We performed training 

using the mini-batch stochastic gradient descent method. A 

separate validation set was used to control the learning rate 

and the final accuracy reported using a different test set. To 

prevent biasing of the model we selected an equal number of 

(+ve) and (-ve) samples from the training, validation and 

testing datasets. The number of layers was tuned from 1 to 6 

with a fixed number of nodes per layer (typically 2048). 

Table 1: List of speech attributes 

Vowels, Stops, Affricates, Fricatives, Nasals, Liquids, 

Semivowels, Approximant, Coronal, High, Dental, Glottal, 

Labial, Low, Mid, Velar, Back, Retroflex, Anterior, 

Continuant, Round, Tense, Voiced, Monophthongs, 

Diphthongs, Silence 

2.3. One-class SVM 

The OCSVM is a special variant of the traditional two class 

SVM introduced for the first time by Schӧlkopf et al. [26] to 

address the novelty detection problem. Unlike the multi-class 

SVM, here data from only one class is available and the 

OCSVM trained to create a decision boundary separating the 

data from the origin. The OCSVM is used commonly for 

anomaly detection applications [27]; in speech analysis, it has 

been used successfully to classify between speech and music 

[28], audio-event detection [29] and spoofing detection [30]. 

The OCSVM operates better when there are no or less 

anomalies in the training data, as in the pronunciation 

verification problem where more correctly pronounced than 

mispronounced data is available. This is because the decision 

boundary of the OCSVM is affected significantly by the 

existence of outliers [31].  Moreover, there are unlimited 

variations in the incorrect pronunciations, influenced by the 

speaker’s native language in second language acquisition 

applications or the type and/or degree of disorder in speech 

therapy applications. Therefore, systems trained using the 

available mispronounced data fail to generalize to unseen 

variations of the pronunciation errors.  

We trained an OCSVM model for each phoneme using 

only the correct pronunciation occurrences of this phoneme. 

The features used to train the OCSVM were extracted from 

the 26 pre-trained speech attributes classifiers described in 

Section 2.2, all of which have been found to be robust to 

speaker variation and environmental noise [8]. In addition, any 

distortion in the pronunciation of a specific phoneme is 

represented as a loss of one or more of its articulation 

attributes. 

All the speech attribute binary classifiers were used to 

evaluate the frames of each phoneme and the +ve output from 

each binary classifier taken to form a vector of 26 features that 

represents the probability of the presence of each specific 

attribute in the current frame. A separate validation set 

containing samples from the current phoneme as well as 
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samples from other phonemes was used to tune the parameters 

of the OCSVM to achieve the lowest frame-level false-

acceptance (FA) and false-rejection (FR) rates. 30% of the 

validation set was selected from the same phoneme 

representing the (+ve) samples and 70% randomly selected 

from the frames of the other phonemes representing the (-ve) 

ones. We tried three kernels (linear, sigmoid and rbf) with 

different parameters. Because of the imbalance between the 

(+ve) and (-ve) samples in the validation set, the optimal 

parameters were selected to maximize the F1 score instead of 

the overall accuracy to consider both the FA and FR rates. The 

F1 score is defined as follow: 

        𝐹1 =  
2𝑇𝐴

(2𝑇𝐴 + 𝐹𝐴 + 𝐹𝑅)
 (1) 

where TA is the true-acceptance. 

In the testing mode, all the frames of each phoneme being 

tested were evaluated and the phoneme acceptance/rejection 

decision made based on the ratio between the number of in-

class and out-of-class frames. 

2.4. Goodness of Pronunciation (GOP) 

For comparison, we implemented the GOP as proposed in [8] 

where the posterior probability of each phoneme was 

estimated using the following equation: 

𝑃(𝑝𝑖 𝑂⁄ ) =  
𝑃(𝑂/𝑝𝑖)

𝑚𝑎𝑥𝑝𝑗∈𝑄(𝑃(𝑂/𝑝𝑗))
 (2) 

where 𝑝𝑖 is the underlying phoneme and the numerator 

𝑃(𝑂/𝑝𝑗) is the phoneme likelihood computed from the forced 

alignment step and 𝑂 is the observation segment of 𝑝𝑖  

obtained from the forced alignment. A free-phoneme 

recognition step is performed using a phoneme loop grammar 

created from the list of phonemes in 𝑄. The denominator is the 

maximum likelihood from the free-phoneme recognition of the 

observation segment 𝑂. The acoustic model used to estimate 

the GOP is based on the DNN-HMM approach [32]. 

The normalized log value of the computed score was 

compared to a predefined threshold to accept or reject the 

pronunciation. Specific thresholds for each phoneme were 

tuned to maximize the phoneme F1 score in the validation set. 

2.5. Speech corpus 

The first corpus is the standard TIMIT corpus which consists 

of recordings of ten phonetically-rich sentences from 630 

native-English speakers from 8 different dialects [33]. 462 

speakers were used for training while the other 168 speakers 

were split equally between the validation and testing sets. The 

training part of this corpus was used to feed the speech 

attribute detectors, OCSVM models and the DNN-HMM 

acoustic models, while the validation and testing parts was 

used for parameter tuning and performance evaluation of each 

module separately. 

Two more corpora were used to evaluate the whole 

system. The first one consisted of 30 typically developing 

(TD) children between the ages 6-12 years selected from the 

OGI kids’ speech corpus [34]. Each child pronounced 205 

isolated words and 100 short sentences. As the TD dataset is 

correctly pronounced, we manipulated its phonetic 

transcription to generate artificial pronunciation errors. We 

simulated typical CAS substitution errors by altering the 

phonetic transcription to reflect common substitutions made 

by children with CAS [5]. The second corpus was recorded 

from 11 children with CAS producing 450 isolated words. The 

CAS corpus was collected and annotated by a speech and 

language pathologist at the University of Sydney. 

3. Results 

3.1. Speech attribute detection 

For each attribute, we trained a binary DNN classifier on the 

TIMIT corpus to detect the attribute’s existence or absence in 

the current frame. Figure 2 shows the frame-level error rate of 

the 26 attributes when using shallow NN (1 layer) and deep 

NN (6 layers). The results show that using 6 layers improved 

the performance for almost all the attribute classifiers 

compared to a single layer. The “silence” detector achieved 

the lowest error rate of around 2% followed by the “affricate”, 

“nasal” and “fricative” with error rates of approximately 5% 

while the “tense” classifier gave the highest error rate of 15%. 

 
Figure 2: The error rate of the speech attribute detectors when 

using 1 layer and 6 layers 

3.2. Phoneme-specific OCSVM model 

In this experiment, we used the trained speech attribute 

classifiers to extract the attribute features from each frame and 

fed them to the phoneme OCSVM model using the TIMIT 

corpus. As aforementioned, frames from each specific 

phoneme were used to train the OCSVM model while only 

30% of the frames from the underlying phoneme were 

included in the validation set and the rest were selected 

randomly from the other phonemes. The model of each 

phoneme was trained and tuned separately using the training 

and validation sets. Overall, the linear kernel gave the worst 

score for all phonemes followed by the sigmoid while the best 

performance was obtained using the rbf kernel and achieved 

F1 score greater than 0.8 for the majority of the phonemes. 

Using the optimum parameters obtained from tuning each 

phoneme OCSVM model, we tested each model with the 

separate TIMIT test dataset for a phoneme-level evaluation. 

The model of each phoneme was tested against samples from 

the same phoneme to estimate the model FR rate and against 

samples from other phones to estimate the FA rate. All 

samples extracted from the test set were force aligned to the 
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correct phoneme sequence of each sentence along with its 

corresponding speech signal.  

Table 2 demonstrates the phoneme-level FR and FA rates 

for each phoneme and the number of occurrences in the test 

set. In this experiment, the phoneme is considered in-class 

(accepted) if the ratio between the in-class frames to the out-

of-class frames is greater than 1 otherwise it is rejected which 

means that the decision threshold is equal to 1. As shown in 

the table, most of the phonemes had both FA and FR rates less 

than 10% with some extremes such as /ih/, /uh/, /eh/ and /ah/. 

Overall, consonants perform better than vowels with 

averages of 5.5 and 5.8 and standard deviations of 1.5 and 2 

for the FA and FR rates respectively compared to averages of 

7.2 and 8 and standard deviations of 2.3 and 3 for the vowels 

FA and FR rates respectively. The majority of the phonemes 

have FA and FR rates lie around 5% while the affricate /ch/ 

shows the best discriminative performance with both FA and 

FR of around 2% and 3% respectively. The FA and FR rates 

can be further controlled by relaxing or restricting the decision 

threshold as will be demonstrated in the next experiment. 

Table 2: The phoneme-level false-acceptance (FA) and 

false-rejection (FR) rates of the OCSVM model 

Ph N# FA 

(%) 

FR 

(%) 

Ph N# FA 

(%) 

FR 

(%) 

aa 588 4.93 6.59 g 367 5.99 4.55 

ae 743 5.25 5.79 hh 177 4.52 4.22 

ah 436 7.8 11.29 jh 180 5 3.54 

ao 617 7.29 5.01 k 822 4.62 2.63 

aw 118 9.32 8.97 l 1126 6.13 7.64 

ay 433 6 4.46 m 644 5.75 5.09 

eh 732 11.07 9.12 n 977 6.45 5.65 

er 401 5.24 6.99 ng 179 5.03 6.18 

ey 395 6.84 6.32 p 456 5.92 4.33 

ih 824 7.52 16.6 r 1174 4.94 5.08 

iy 1378 5.95 7.79 s 1397 4.01 4.85 

ow 413 7.26 8.17 sh 402 7.71 6.7 

oy 131 6.11 5.36 t 755 6.49 7.66 

uh 105 13.33 12.29 th 131 5.34 10.98 

uw 95 5.26 6.18 v 295 6.78 9.64 

b 360 4.72 4.99 w 595 2.86 4.39 

ch 146 2.05 3.31 y 260 6.92 5.65 

d 441 9.52 8.89 z 638 4.86 6.02 

dh 279 5.73 5.73 zh 38 7.89 8.53 

f 478 4.18 3.54     

3.3.  Pronunciation error detection 

In this experiment, we used both the TD and CAS speech 

corpora to show the effectiveness of the algorithm as a 

pronunciation verification method. Moreover, we compared 

our OCSVM approach with the GOP as explained in section 

2.4. We first force aligned the speech signal with the 

manipulated version of the phonetic transcription for the TD 

corpus and with the expected phoneme sequence of the prompt 

word for the CAS corpus. Forced alignment was performed 

using DNN-HMM acoustic models trained on the TIMIT 

training set. Both the OCSVM and GOP methods were then 

applied to each phoneme and the phoneme accepted if the 

score exceeded a predefined decision threshold, otherwise 

rejected. The score of the OCSVM is the ratio between the 

number of in-class and out-of-class frames while the score of 

GOP is the normalized estimated log posterior probability. 

Furthermore, we tuned a phoneme-specific decision threshold 

for both algorithms to achieve a maximum F1 score for each 

phoneme. 

 

Figure 3: The F1 scores and the false acceptance (FA) and 

false rejection (FR) rates of the OCSVM and GOP algorithms 

applied to the TD test set and the CAS corpus. 

Figure 3 shows the performance of the two algorithms 

against the TD data set with artificial errors and the CAS data 

set. The results show that our method slightly outperformed 

the GOP in the artificial error task with F1 score and FA and 

FR rates of 0.77, 30% and 28% respectively compared to 0.73, 

29% and 33% obtained from the GOP algorithm. On the other 

hand, our approach showed a significant improvement over 

the conventional GOP algorithm when applied to data with 

real pronunciation errors. Our method had a significantly 

higher F1 score of 0.83 and lower FR of around 26% 

compared to the GOP 0.72 and 40%, respectively while both 

methods achieved similar FA rates. 

4. Conclusions 

In this work, we presented a phoneme-level pronunciation 

verification method that leverages upon the anomaly detection 

framework by using a One-Class SVM model trained with a 

set of speech attribute features. We first constructed a bank of 

manner and place of articulations DNN detectors to extract the 

speech attribute features of each speech frame. A OCSVM 

model was then trained to learn the distribution of the attribute 

features of each phoneme from the correctly pronounced data 

and this model then used to measure the similarity of the new 

data and decide if the phoneme pronunciation was normal 

(correct) or anomalous (incorrect). 

We compared our method to the DNN GOP algorithm to 

compare how effective our algorithm is. Both algorithms were 

applied to the TIMIT corpus with artificial errors and foreign-

accented speech corpus. The results showed that our OCSVM 

method reduced the FR rate from 40% when using the GOP 

method to around 26%.  

The results are promising given the limited amount of 

training data in the TIMIT corpus. Further improvement can 

be obtained by increasing the data specifically in the attribute 

detectors as in [24]. Moreover, careful analysis of the attribute 

features and selection of the best discriminative set of features 

for each phoneme could further improve the OCSVM model 

accuracy. 
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