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Abstract
In this work we present a method for semi-supervised learn-

ing from transcripts of dialogue between humans. We consider
the scenario in which a large amount of transcripts are available,
and we would like to extract some semantic information from
them; however, only a small number of transcripts have been
labeled with this information. We present a method for lever-
aging the unlabeled data to learn a better model than could be
learned from the labeled data alone. First, a recurrent neural
network (RNN) encoder-decoder is trained on the task of pre-
dicting nearby turns on the full dialogue corpus; next, the RNN
encoder is reused as a feature representation for the supervised
learning problem. While previous work has explored the use of
pre-training for non-dialogue corpora, our method is specifically
geared toward the dialogue use case. We demonstrate an im-
provement on a clinical documentation task, particularly in the
regime of small amounts of labeled data. We compare several
types of encoders, both in the context of a classification task and
in a human-evaluation of their learned representations. We show
that our method significantly improves the classification task in
the case where only a small amount of labeled data is available.

1. Introduction
A key problem in spoken language understanding is automati-
cally extracting local information from a dialogue between two
people. For example, a company with a customer support line
may wish to extract structured information about each caller’s
problem (e.g., the product, details of the issue). Similarly, a
healthcare provider may be interested in automatic documenta-
tion of issues discussed in a patient-doctor visit (e.g., current
symptoms, medical history) [1]. We describe this information
as local because it can be inferred from a small segment of the
dialogue (as opposed to the overall topic). With continuing im-
provement of automatic speech recognition, the problem is now
a matter of extracting information from text transcripts [2].

While the dialogue corpus itself may be large, it is common
for it to come with few or no labels. Labeling must be done by
humans and may require expert knowledge, which can be very
costly. In these settings, semi-supervised learning, in which we
leverage a large amount of unlabeled data to improve a model
trained on a small amount of labeled data, is essential.

This paper presents a method for using semi-supervised
learning for extraction of local structured information from di-
alogue transcripts. It is geared toward the regime in which we
have access to only a small set of labeled transcripts, but also to
a large amount of unlabeled transcripts.

Our approach has two stages. In the first, an RNN encoder-
decoder is trained over the full, unlabeled corpus to perform
the following task: given one turn, it must predict the next
or previous turn. This results in an RNN encoder which learns
compactly how to represent a dialogue turn, and an RNN decoder
which learns how to generate a dialogue turn.

In the second stage, a separate RNN encoder-decoder (or
encoder-classifier) model is trained to predict the provided labels,
given each turn of dialogue. This second model is trained only on
the small amount of supervised data, but its encoder is initialized
with the weights of the first model’s encoder, enabling transfer
of knowledge from the prior task. The second model’s weights
are then fine-tuned to the task of interest. Applying this method
to a clinical documentation task (described further in 1.2), we
observe an improvement in several key metrics, especially when
the amount of labeled data is small.

This method also generalizes to cases where multiple con-
secutive dialogue turns may be required to extract a piece of
structured information: we simply train an encoder to represent
a segment of k consecutive turns rather than a single turn.

1.1. Related work

The use of RNN-based methods for semi-supervised learning of
text classification has previously been explored on non-dialogue
corpora. Most similar to our work, [3], [4] and [5] also employ a
two-stage training process in which the first stage (referred to as
pre-training) trains an RNN encoder in an unsupervised manner,
and the second stage leverages this encoder on a supervised task.

The first stage of our training process differs in several ways.
First, inspired by [3], we investigate the behavior of a sequence
autoencoder; [3] showed that an RNN pre-trained with an au-
toencoder would surpass previous text classification baselines.
Next, to leverage the turn structure unique to dialogue, we pro-
pose a variation that predicts nearby turns and observe that it
outperforms the autoencoder. This is closely related to the “skip-
thought” method [6], which encodes a sentence by training an
encoder to predict the surrounding sentences. In a broader sense,
pre-training is very related to multi-task and transfer learning
[7, 8], since we use a loss function in one task (pre-training)
to improve the performance on another task. Our method is
also related to recent works in zero-resource machine translation
[9, 10, 11, 12].

In the realm of dialogue systems, RNNs have been used
extensively to understand spoken language, typically for slot-
filling [13, 14, 15, 16], but none of these use pre-training, beyond
that of word embeddings. [17] has used nearby-turn prediction
to train “turn embeddings” as part of an end-to-end dialogue
system, which is similar to the first stage of our training process.
Our work differs in the second stage: 1) we demonstrates the
effectiveness of pre-training on an information extraction task;
2) we analyze our method under various conditions and compare
it directly to autoencoders.

1.2. Task

To demonstrate the effectiveness of our method, we present
results on a clinical documentation task. A physician’s note
includes a section listing the affirmation, denial, and description
of symptoms necessary to evaluate a patient. However, patients
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Figure 1: Examples of symptom extraction task. Given a snippet
of a patient-doctor transcript, the task is to predict (a) whether
or not a symptom is present in the snippet, (b) the name of the
symptom, (c) the status of the symptom.

may express the experience of symptoms in numerous ways: “I
have a headache”, “My head hurts”, “There’s a throbbing behind
my eye”. This information can even spread across multiple
consecutive turns: “I feel a throbbing.” “Where?” “My head.”.
For each turn of each transcript, our goal is to extract and classify
any symptoms mentioned, as well as their status (whether the
patient has experienced it). See Figure 1 for an example.

We choose to conduct our experiments on this task because
it requires more complex language understanding than simple
keyword spotting. A simple baseline that uses a medical named
entity recognition model to annotate symptoms recalls only about
20% of the symptoms in our data.

The remainder of this paper is organized as follows. First,
we explain our method of semi-supervised learning in more
detail. Next we describe details of our experiments on the clinical
documentation task, and show the results together with human-
evaluation of the turn representations learned from pre-training.

2. Semi-supervised learning for information
extraction

This work presents and analyzes a semi-supervised learning
method for extracting structured information from dialogue tran-
scripts. The method consists of two stages. For consistency with
prior work, we refer to these as unsupervised pre-training and
supervised classification.

2.1. Unsupervised pre-training

The first stage pre-trains an RNN encoder as part of an encoder-
decoder (also known as sequence-to-sequence) model [18, 19].
Broadly, this class of models solve the following problem: given
a pair of token-sequences (x,y), where x = (x1, ..., xm) is
called the input sequence and y = (y1, ..., yn) is called the
output sequence, we would like to maximize P (y|x). These
models contain two key components.

First, an RNN encoder consumes the input sequence x one
token at a time to produce a hidden state, h(x). Conceptually,
this is a dense vector representation of the sequence x. Next, an
RNN decoder estimates an output distribution over sequences
y∗ conditional on h(x). Maximizing P (y|x) over a training
corpus forces the encoder to learn to compactly represent the
most important information from the input sequence.

RNN encoder-decoder models are now ubiquitous for lan-
guage understanding tasks. The key insight of pre-training is
that we can train such a model on one task for which there is
a large amount of unlabeled data, and then re-apply what the

model has learned to another task with few labels [3, 4, 5].
In our model, the input sequence x is the tokens comprising

a turn of dialogue, so the encoder will learn a dialogue turn
representation. We compare three flavors of pre-training that
differ in how the output sequence y is defined (see Figure
2). Since the encoder is trained to be maximally effective
in predicting y, the way in which y is defined will directly
impact the representation of x, a dialogue turn, that is learned.
Our objective is to understand how the definition of y in the
unsupervised pre-training stage will impact the performance of
the supervised classification model.

Autoencoder In the first method, we train a sequence autoen-
coder, since [3] showed promising results with this method.
This means that the output sequence y is identical to the
input sequence x. In other words, the model must learn to
reconstruct a dialogue turn itself. While this seems simplistic,
[3] has shown that it is highly effective because h(x) acts as
a sort of bottleneck: in order for the decoder to reconstruct
sequence given only h(x), the encoder must learn a compact
representation. On the other hand, one drawback of this method
is that correct reconstruction is more about the words themselves
rather than the overall meaning.

Next-turn prediction To force the encoder to encapsulate more
of the meaning of a turn, we also consider next-turn prediction
as a second method for unsupervised pre-training. Here,
given the input sequence xt, the output sequence y is xt+1.
Essentially this is the same model as a neural conversation
model [20, 21, 22, 23], but we are only interested in the encoder,
and will throw away the decoder. We hypothesize that this
objective forces the encoder to learn something about the
semantic intent of xt, rather than simply its lexical features, in
order to predict the reply xt+1. For example, if xt contains a
question, the encoder should encapsulate this to predict the next
speaker’s answer. We argue that this results in a stronger turn
representation than from an autoencoder.

Skip-turn prediction Finally, we consider a generalization of
next-turn prediction, which is to predict not just the next turn
but other nearby turns as well. In other words, given input se-
quence xt, we create 2k different input examples: (xt,xt−k),
(xt,xt−k+1), ... (xt,xt−1), (xt,xt+1), ... (xt,xt+k−1),
(xt,xt+k) for some value of k. This is inspired by the Skip-
Thought [6] and Skip-Gram [24] models. The premise of these
models is that a word or sentence is defined by its context words
or sentences; here we apply the same concept to dialogue turns.

Figure 2: Depiction of general pre-training set-up and how the
input and output sequences are defined for each type of encoder.
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2.2. Supervised classification

In the second phase of our method, we perform a traditional
supervised text classification task. Since our goal is to investigate
the effectiveness of the unsupervised pre-training, we keep the
supervised phase relatively simple. We assume that we have
a small set of labeled dialogue turns (xt, zt), where xt is a
dialogue turn, and zt is a sequence of labels that humans have
given to that dialogue turn. For our particular task, xt is from a
patient-doctor conversation, and zt consists of three tokens: a
token indicating whether or not a symptom is discussed in xt,
the name of the symptom, and the status of that symptom.

The objective of the model is to maximize P (zt|xt). Since
both xt and zt are sequences, we again apply an RNN encoder-
decoder architecture for the classification task. We posit that
in the case where zt is a single token (label), the decoder can
be replaced with a feed-forward neural net classifier. Since we
are studying the impact of pre-training, a more extensive explo-
ration of supervised classification architectures, as well as more
sophisticated handling of cases in which multiple symptoms are
mentioned in a turn, are considered to be beyond the scope of
this work. These questions will be explored in later work.

The key link with the first phase is that we initialize the RNN
encoder with the weights from the RNN encoder that was trained
in the first phase, then allow them to continue training. The first
phase should teach the RNN how to effectively and compactly
encode the meaning of a turn, while the second phase should
learn how to apply this representation to a classification task.

This method can also be generalized to cases where multiple
turns of context may be required for classification. For this
scenario, we choose a context window size k and train an encoder
to encode not a single turn, but a segment of k consecutive turns.
In other words, during pre-training, the input sequence consists
of turns x

t− k−1
2

, · · · ,xt, · · · ,xt+ k−1
2

concatenated together.
The output sequence will also consist of k turns: the same k turns
for the autoencoder, the next k turns for next-turn prediction,
and either the previous or next k turns for skip-turn prediction.
In the second stage we continue to use the same context of k
turns and initialize the encoder from the first stage.

3. Experimental details
Our experiments are conducted on a set of about 90K human-
transcribed and de-identified medical encounters (details see [2]).
The transcripts consist of a series of turns that each begin with
a special token indicating the type of speaker (e.g. clinician,
patient or caregiver).

In the first stage, unsupervised pre-training is performed on
the full set of conversations, comprising 10 million speaker turns.
In the second stage, supervised classification is performed on
labels created by human experts on 566 conversations. Each turn
in the transcripts was labeled in three ways: whether a symptom
was discussed in the turn, the category of symptom (out of 170
pre-specified common symptoms), and the status of the symtpom
(experienced, not experienced, or not applicable). See examples
in Figure 1. These labels comprise a basic building block for the
”review of systems” in a clinical note.

In total, humans labeled about 7K symptom occurrences
across the 566 conversations (80/20 train/test split, 79 as test
and 487 as training). The most frequent symptoms are: pain
(7.0%), cough (5.6%) and shortness-of-breath (5.5%). In the
next section we show results on two versions of the training data:
Symptom600 is only ten percent of the training set (about 600
symptom occurrences, randomly chosen), while Symptom6K is

the full training set. Note that 73% of dialogue turns do not
have a symptom associated with them. We keep these ”negative”
examples in both training and test sets because part of the task is
to determine if there is a symptom present.

We conduct the experiments with a 3-turn context window
because more than one turn may be required to determine a symp-
tom’s status. Consider the simplest example: ”Any pain?” ”Yes,
in my back.” In order to conclude that back pain is experienced,
both turns must be considered together.

4. Results
The main result of this paper is that our symptom extraction
model achieves the best results when the encoder has been pre-
trained with the skip-turn or next-turn methods, especially when
the training data size is small. We use three metrics for our model.
Symptom Present F1 (SPF1) is the F1 score for identifying which
turns mention a symptom. This is important to measure because
most dialogue turns do not mention any symptom. Among those
that do mention a symptom, Symptom Accuracy (SympAcc)
is the percentage of examples for which the model correctly
classifies the symptom, and Status Accuracy (StatusAcc) is the
percentage of examples the model correctly classifies the status.

4.1. Baseline model

Our baseline model is a long short-term memory (LSTM) [25]
encoder-decoder model without pre-training. The decoder out-
puts a sequence of 1-3 tokens (symptom-presence, name, status),
which is chosen through beam search as described in [18].

We tuned the hyper-parameters of our baseline model on a
dev set (subset of training), and report the results on the test set.
Our final model is a single layer bidirecional LSTM with 512
hidden nodes, with small dropout (0.1) on the Symptom600 set
and no dropout on Symptom6K. We used the Adam optimizer
and tuned the learning rates on each training set.

For our pre-training experiments we use the same model
architecture as the baseline, but with the encoder component
pre-trained with the various objectives previously described (au-
toencoder, next-turn, skip-turn). We do not show a comparison
with other text classification models (e.g. bag-of-words, support
vector machines), as [3] demonstrates that an RNN model pre-
trained with a sequence autoencoder meets or surpasses all those
models on a range of text classification tasks.

As a side note, a “chance baseline” using the training set’s
label distribution will get SPF1 of 27% and SympAcc of 7%,
which is much worse than our models.

4.2. Comparing pre-training methods on small data

Table 1 compares the various pre-training methods on the symp-
tom extraction task for Symptom600. Without any pre-training
(first row), the model barely learns anything: it classifies just
9% of symptoms correctly, while all three pre-training methods
have much higher accuracies. This shows that pre-training is
essential to making the symptom extraction model work with a
small amount of labeled training data.

Among the pre-training methods, next-turn and skip-turn
encoders perform better than autoencoder. We hypothesize that
this is because the next-turn and skip-turn tasks are harder, so
that pre-training leads to a stronger encoder. Those methods
also require better understanding of intent, rather than simply
copying lexical features. In Section 4.4, we will analyze the
encoders in more detail.
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Pre-training SPF1 SympAcc StatusAcc
None (baseline) 67% 9% 44%

Autoencoder 78% 36% 57%
Next-turn 83% 32% 63%
Skip-turn 87% 39% 66%

Table 1: A comparison of various pre-training methods on Symp-
tom600. All three pre-training methods (rows 2-4) outperform
the baseline model that uses no pre-training (row 1) on all three
metrics, with the skip-turn encoder performing the best.

4.3. Impact of more data

Next we investigate the impact of increasing the amount of la-
beled training data for the second stage. The first block of Table
2 shows our model’s results when we train the model on Symp-
tom6K, which has 10x more labeled data than Symptom600.
All the models with pre-training still maintain a gain over the
baseline model without pre-training, but it is narrower. The dif-
ference between different encoder types also narrowed. This
shows that our method is most effective when the amount of
labeled training data is small.

In the second block of Table 2, we freeze the encoder’s
parameters after pre-training, and only allow the rest of the
model to train. Here we focus on the intrinsic quality of different
encoders after pre-training. Again, we see a larger gap between
different encoders: both next-turn and skip-turn encoders have
much better performance than autoencoder.

Pre-training SPF1 SympAcc StatusAcc
None (baseline) 81% 40% 55%

Autoencoder 86% 47% 61%
Next-turn 87% 50% 67%
Skip-turn 88% 52% 65%

Autoencoder (frozen) 80% 35% 54%
Next-turn (frozen) 87% 46% 63%
Skip-turn (frozen) 86% 45% 63%

Table 2: A comparison of various pre-training methods on Symp-
tom6K (10x more labeled data than Table 1). The gap between
pre-training (rows 2-4) and no pre-training (row 1) has nar-
rowed. Freezing the encoders (rows 5-7) demonstrates a larger
gap between autoencoder and the other two encoders.

4.4. Encoder analysis

We have shown that skip-turn and next-turn encoders are more
effective at improving the model’s performance than the autoen-
coder. To investigate further why this is the case, we compare
the representations learned by the autoencoder and next-turn
encoder. First, we run each of the 6.7 million unique turns in our
corpus through each encoder and extract the final hidden state,
a 1024-dimensional dense vector that we call a turn embedding.
Then, given a turn, we can compute its nearest neighbors in
the turn embedding space based on cosine distance. We use a
context of 1-turn to train the encoders.

See Table 3 for an example. Using autoencoder, the nearest
neighbors of a short sentence “Yeah I was a little more anxious.”
are similar in syntax but not semantics, while the neighbors for
the next-turn encoder are semantically similar. Even for much
longer turns, next-turn encoder can still provide neighbors with
similar meaning, as shown in Table 4.

Next, to quantify the semantic similarity, we manually se-
lected 230 turns related to symptoms, and asked medical doc-
umentation experts to judge the similarity between each turn
and its nearest 5 neighbors. Raters assigned scores between

Autoencoder Next-turn encoder
Yeah I was taking the ultram. Well I was a little anxious.
Yeah I was using them more. I was just really depressed.
Yeah I was laying there. Yeah I was like really

anxiety dressed, depressed.
Yeah I do have the back pain. Yeah I’m just a little bit

nervous.
Yeah I was curious about that. Yeah and I got real nervous.

Table 3: Neighbors of “Yeah I was a little more anxious.”

Turn Nearest neighbor
Yeah but the only problem Like every two hours
is that I have to urinate to go to the bathroom.
sometimes every two hours.
Yeah. and I lost another I had lost all
2 pounds, and she was happy that weight. I was
with that. so proud of myself.
Yeah, my stomach didn’t With the actonel
like it, and then you put me because it made
on fosamax and that didn’t - me sick

Table 4: Examples of neighbors for long turns based on next-turn
encoder. The neighbors are still similar in meaning.

1 to 5 based on their semantic similarity, i.e. whether they
are substitute-able in a doctor-patient conversation, with 5 be-
ing most similar. See Table 5 for the results. Note that these
symptom-related turns are much longer than the typical turn as
much of the corpus contains social chatting (“how are you”) and
short answers (“okay”). Overall, the next-turn encoder has a
much higher similarity score than autoencoder. For both meth-
ods, their neighbors are less similar for longer turns; this is not
surprising since encoding a longer turn is a more difficult task.
This result helps explain why the next-turn encoder achieved
better performance than the autoencoder in symptom extraction.

Turn Length Autoencoder Next-turn
Short (1-10 tokens) 1.632 3.521

Medium (11-15 tokens) 1.120 2.485
Long (15+ tokens) 1.111 2.322

Overall 1.286 2.771

Table 5: Average semantic similarity score assigned by humans
to turns’ neighbors in the “turn embedding” space. On average
raters assign higher (better) scores to the next-turn encoder.

5. Conclusions
In this work we presented a method for semi-supervised learning
of local information extraction from dialogue transcripts. We
tested our method on a clinical documentation task that required
locating and classifying symptoms in a doctor-patient conver-
sation. We observed that this method significantly improved
the performance of an RNN encoder-decoder model, especially
when only a small amount of labeled training data was available.
Future work will investigate how this method may be impacted
by errors introduced by ASR and how to mitigate this impact.
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