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Abstract
In recent years, harmonic-percussive source separation methods
are gaining importance because of their potential applications in
many music information retrieval tasks. The goal of the decom-
position methods is to achieve near real-time separation, distor-
tion and artifact free component spectrograms and their equiv-
alent time domain signals for potential music applications. In
this paper, we propose a decomposition method based on filter-
ing/suppressing the impulsive interference of percussive source
on the harmonic components and impulsive interference of the
harmonic source on the percussive components by modified
moving average filter in the Fourier frequency domain. The
significant advantage of the proposed method is that it mini-
mizes the artifacts in the separated signal spectrograms. In this
work, we have proposed Affine and Gain masking methods to
separate the harmonic and percussive components to achieve
minimal spectral leakage. The objective measures and sepa-
rated spectrograms showed that the proposed method is better
than the existing rank-order filtering based harmonic-percussive
separation methods.
Index Terms: Harmonic, Mixture, Mask, Percussion, Poly-
phonic, Separation.

1. Introduction
The components in a polyphonic music signal can be broadly
classified into harmonic and percussive sources. The harmonic
sources such as violin, piano and so on are pitched sources con-
tain fundamental frequency and higher harmonics, which can
be modeled with finite number of sinusoids, manifests as hori-
zontal ridges in the magnitude spectra of the short-time-Fourier-
transform (STFT). The percussive sources such as castanets and
many drums exhibits impulsive like nature, difficult to model
by a finite number of sinusoids results in a wideband spectral
energy or a vertical ridge in the magnitude Fourier spectrum.
Thus, the harmonics of the pitched sources results in impul-
sive like noise along the frequency bins of the Fourier spectrum
where the percussion source exhibits uniform energy across fre-
quency bins. Similarly, the percussion sources results in impul-
sive like noise for harmonic sources across the spectral frames
where they exhibit temporal continuity along the time. Hence,
in this paper, the impulsive noise like nature of percussion and
harmonic sources across the spectral frames and frequency bins
are suppressed to enhance the percussion and harmonic sources
along the frequency bins and spectral frames respectively.

The well separated sources can be used as input for many
music related applications [1]. The harmonic source can be used
in multipitch extraction [2, 3], automatic pitched source tran-
scription [4, 5], melody extraction [6, 7, 8, 9, 10], singing voice
separation [11] and so on. Similarly, the percussion source can
be used in onset detection [12], beat tracking [13], automatic
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Figure 1: Complex spectrogram of the polyphonic music.

transcription of drums [14, 15], rhythm analysis [16], tempo es-
timation [17, 18], since these applications require signals which
is free from harmonic sources and rich is percussion compo-
nents.

We can find several harmonic-percussive source separation
methods in the literature. In [19], the noisy phase behavior of
the percussion in the input signal is exploited to separate the
harmonic and percussive components in the music signal. An
iterative spectrogram diffusion algorithm is proposed in [20].
The method involves diffusing the spectrogram in horizontal
and vertical directions to enhance the harmonic and percus-
sive components in the mixture spectrogram, which is based on
the observation that the harmonic sources tend to exhibit them-
selves as horizontal ridges and percussion sources as vertical
ridges in the magnitude spectrogram. The complex iterative
diffusion method is replaced by much simpler median filter-
ing based method in [21] to separate the mixture signal into
harmonic-percussive sources. The median filtering based ap-
proach [21] is extended in [22] to separate the composite sig-
nal into harmonic, percussive and residual components. Op-
timization based methods such as non-negative matrix factor-
ization [23] and kernel additive modeling [24] is proposed for
harmonic percussive source separation.

In this paper, we propose a modified moving average filter-
ing based method which is capable of filtering/suppressing the
impulsive like events in the spectrogram to decompose into har-
monic and percussive sources. The significant advantage of the
proposed method is that it minimizes the artifacts in the sepa-
rated signal spectrograms. In this work, we also propose and
evaluate several making methods to separate the harmonic and
percussive components with minimal leakage. Finally, we eval-
uate our proposed method based on objective measures and sep-
arated spectrograms.

2. Harmonic-Percussive Separation
The polyphonic music, in general is a mixture of harmonic and
percussive sources. The harmonic sources are deterministic sig-
nals exhibits horizontal lines in the magnitude Fourier spectro-
gram, whereas, percussive sources are non-deterministic impul-
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Figure 2: Spectrograms of the harmonic and percussive sources.

sive like events forms vertical lines in the Fourier spectrogram.
An example spectrogram of the composite music signal con-
sisting of violin as harmonic and castanets as percussive source
is shown in Fig. 1. From Fig. 1, we can observe two distinct
patterns which are orthogonal to each other in the magnitude
spectrogram i.e., horizontal and vertical ridges in the spectro-
gram. The spectrograms of the individual sources are shown
in Fig. 2. The spectrogram of the harmonic source (violin) is
shown in Fig. 2(a). From Fig. 2(a), we can observe that the
harmonics of the violin forms horizontal ridges in the spectro-
gram. Similarly, Fig 2(b) shows the spectrogram of the percus-
sive source (castanets). From Fig 2(b), we can observe that the
impulsive events of the castanets forms vertical ridges in the
spectrogram. Furthermore, careful observation of the spectro-
grams in Figs. 1 and 2, we can conclude that harmonic peaks
of the pitched (harmonic) sources forms outliers in a spectral
frame where percussive sources have uniform energy. Similarly,
percussive events forms outliers in a frequency bin of the spec-
trogram where the harmonic sources mostly have equal energy.
We propose using a modified moving average smoothing filter
to suppress the harmonic spectral peak outliers in the spectral
frames to enhance the percussion components, and to suppress
the percussion source outliers in the frequency band of the spec-
trogram to enhance the harmonic sources.

Traditionally, moving average filter is used to suppress the
high frequency noise in the input signal. The amount of sup-
pressed noise depends on the length of the moving average filter
given by

M(i) =
1

N

i+(N−1)∑

k=i

s(k) (1)

where s(k) is the noisy input signal, N is the filter length and
M(i) is the noise-suppressed signal. The frequency response of
the moving average filter is given by

H(ω) =
1

N

(1− e−jωN )

(1− e−jω) (2)

Though the frequency response H(ω) has lowpass filter char-
acteristics, its high frequency attenuation capability is much
weaker. Since as N , the length of the filter increases, height of
the side lobes of the frequency response of the filter increases
resulting in poor attenuation of the impulse like events. Hence,
the moving average filter cannot be used for suppressing impul-
sive like spectral peaks in the spectrum. An example of moving
average filter applied on a synthetic signal consisting of impul-
sive noise (blue contour) and filtered signal (red contour) are
shown in Fig. 3. From Fig. 3, we can observe that the mov-
ing average filter fails to significantly attenuate the impulsive
noise, which is not the desired filter characteristic required to
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Figure 3: Comparison of impulsive noise smoothing capabili-
ties of moving average and MMAF.
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Figure 4: Impulsive noise like interference of harmonic source
suppression to enhance the percussion of the spectral frame.

remove impulsive like interference in the spectrogram to sepa-
rate harmonic and percussive sources. In order to overcome the
limitations of the moving average filter, the modified moving
average filter (MMAF) [25] is proposed to strongly attenuate
the impulsive noise events in the signal. The impulsive noise
smoothing MMAF is given by

A(i) =M(i) +
(Pos −Neg) · |Dtotal|

N2
(3)

where M(i) is the moving average filter given in Eq. 1, Pos
is the total number of samples above the mean, Neg is the to-
tal number of samples below the mean in N signal samples.
|Dtotal| is the cumulative absolute deviation of the samples
from the meanM(i) andN is the length of the filter or samples
considered for smoothing. A(i) is the impulse smoothed sig-
nal. The second term in Eq. 3 acts as a correction factor to the
moving average filter result M(i) to strongly attenuate the im-
pulsive noise in the signal. An example showing the strong im-
pulsive event attenuating characteristics of the MMAF is shown
in Fig. 3. The green contour is the smoothed signal which is ob-
tained after applying MMAF. From Fig 3, we can observe that
the MMAF has high impulsive noise attenuating capability than
moving average filter. Also, we can observe that the MMAF
filtered signal is much more smoother than the signal obtained
by averaging filter (red contour) at the impulsive events.

The plot in Fig. 4 shows the frame of a magnitude spectro-
gram where the harmonic peaks of the violin acts as impulsive
noise to the castanets percussion source which shows noisy be-
havior. From Fig. 4, we can observe that MMAF mostly atten-
uates the impulsive noise interference of the harmonics to en-
hance the percussion source, which is shown as green contour.
Similarly, the MMAF across the spectral bin attenuates the im-
pulsive interference of the percussion to enhance the harmonic
sources.
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The aim is to decompose the given music signal s into har-
monic sh and percussive sp sources such that s ∼ sh + sp
i.e., when the components are combined back either in spectral
or time domain. Further, the combination should yield original
music signal without much distortion. The input music signal s
is transformed to spectral domain by applying STFT given by

S(l, k) =

N−1∑

n=0

s(n+ lH)w(n)e−j2πkn/N (4)

where l = [0, ..., L−1], k = [0, ..., N/2], L is the total number
of frames, N is the Fourier frequency bins, w is the Hamming
window and H is the hop size.
The harmonic components in the magnitude spectrogram
F (l, k) = |S(l, k)| is enhanced by suppressing the impul-
sive interference of the percussion in each frequency band (bin)
given by

H(l, k) =M{F (l − th, k), ..., F (l + th, k)} (5)

Similarly, the percussion source in a spectral frame is enhanced
by suppressing the impulsive harmonic source given by

P (l, k) =M{F (l, k − tp), ..., F (l, k + tp)} (6)

whereM is the MMAF, 2th + 1 and 2tp + 1 are the MMAF
filter lengths for percussion and harmonic event suppression.

The resulting enhanced harmonic H(l, k) and percussion
P (l, k) spectrograms are used for generating binary masks,
which are then applied on the original spectrogram S(l, k) to
obtain the complex spectrograms of harmonic and percussive
sources. In this paper, two new masking methods are added
to the existing ones proposed in [21, 22] resulted in total five
masking methods. In which, two methods are non-parametric,
where the user has no control over the inter spectral leakage
i.e., harmonic components leaking into percussion spectrogram
and vice versa. The remaining three are the parametric masking
methods, which controls the amount of spectral leakage with the
help of separation parameters, discussed later. We have evalu-
ated all five masking methods to analyze the tight spectral sep-
aration capability to minimize the inter spectral leakage due to
masking.

The non-parametric methods include simple Binary thresh-
old and Wiener filter. The Binary threshold is a hard threshold
on the enhanced spectrograms to obtain the harmonic and per-
cussive masks given by

HM (l, k) =

{
1 if H(l, k) > P (l, k)

0 otherwise
(7)

PM (l, k) =

{
1 if P (l, k) ≥ H(l, k)

0 otherwise
(8)

The Wiener filtering results in a smooth binary mask given by

HM (l, k) =
Hγ(l, k)

Hγ(l, k) + P γ(l, k)
(9)

PM (l, k) =
P γ(l, k)

Hγ(l, k) + P γ(l, k)
(10)

where γ is a power to which each spectral value is raised. Here,
the value of γ is set to 2.

The parametric methods include Relative [22], Gain, and
Affine masking methods which have two independent parame-
ters βh and βp decides the extent of separation of the desired
source from the input signal.

The relative masking method is given by

HM (l, k) =
H(l, k)

P (l, k) + ε
> βh (11)

PM (l, k) =
P (l, k)

H(l, k) + ε
≥ βp (12)

where ε is a tiny constant to avoid division by zero error, the
operators > and ≥ results in binary values {0, 1}.
The gain masking method is given by

HM (l, k) = H2(l, k) > (βh · P 2(l, k)) (13)

PM (l, k) = P 2(l, k) ≥ (βp ·H2(l, k)) (14)

The affine masking method is given by

HM (l, k) = ((1− βh) ·H(l, k)) > (βh · P (l, k)) (15)

PM (l, k) = ((1− βp) · P (l, k)) ≥ (βp ·H(l, k)) (16)

Here, the independent parameters βh and βp imposes the tight
constraint on the separation process. Depending on the value of
the parameter βh,HM (l, k) will results in a binary mask mostly
contains the signatures of the harmonic content. Similarly, the
parameter βp minimizes the leakage of the harmonic signatures
into PM (l, k).

The binary masks HM (l, k) and PM (l, k) are multiplied
with the original complex spectrogram S(l, k) to obtain the har-
monic and percussive spectrograms

SH(l, k) = S(l, k) ·HM (l, k) (17)

SP (l, k) = S(l, k) · PM (l, k) (18)

where · is the element wise product. The inverse STFT is ap-
plied on the SH(l, k) and SP (l, k) to obtain the time domain
harmonic and percussive signals sh and sp respectively.

3. Evaluation and Discussion
The separation quality of the proposed method is evaluated by
computing the source to distortion ratio (SDR), source to inter-
ference ratio (SIR) and source to artifact ratio (SAR) [26, 27].
The mixture signal is obtained by adding the harmonic (vo-
cals + harmonic instruments or harmonic instruments alone)
and percussive instruments from freesound.org. We have col-
lected Vocals (male and female), Flute, Cello, Violin as har-
monic instruments, Snare drum, Tabla, Castanets, Hit-Hat as
percussion instruments to create the mixture, drawn three in-
struments at a time, resulted in 84 mixture samples. All five
masking methods are evaluated objectively to analyze the tight
spectral separation property of each method to minimizing the
inter spectral leakage due to masking. The objective mea-
sures SDR, SIR and SAR with respect to separation parameters
βh(beta H) and βp(beta P) are shown in Figs. 5 and 6 respec-
tively. Fig. 5 shows the objective measures for Binary threshold,
Wiener, Relative and Gain masking methods for varying separa-
tion parameters βh and βp. Since Binary threshold and Wiener
methods are non-parametric methods, the measures SDR, SIR
and SAR are independent of separation parameters, shown as
a horizontal plots in Fig. 5. Also, we can observe that the
plots for non-parametric methods are well below the plots of
Relative and Gain methods. This is because Binary threshold
and Wiener methods being non-parametric, provides no explicit
control over the leakage of inter spectral components, results in
poor objective measures. The Relative and Gain masking meth-
ods show a similar evaluation results, but close observation of
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Table 1: Objective evaluation measures in dB.
SDR SIR SAR

HP HPR-IO P HP HPR-IO P HP HPR-IO P
-3.83 6.89 9.08 -3.08 19.95 22.76 6.83 7.45 9.41

the plots reveals that the Relative method needs precise setting
of the separation parameters βh and βp to achieve good separa-
tion, whereas, Gain method gives more flexibility in choosing
the parameters since the objective measures remain constant for
a range of parameter values which can be observed from Fig. 5.
Also, from Fig. 5, we can observe that the plots for Relative
and Gain methods remain above the non-parametric masking
methods, this can be attributes to the tight decomposition im-
posed by the separation parameters resulting in reduced inter
spectral leakage. The objective measures for the Affine mask-
ing method is plotted separately in Fig. 6 because the range of
separation parameters for this method is between 0 and 1 i.e.,
0 < βh < 1 and 0 < βp < 1. Unlike Relative and Gain
masking methods, Affine masking method is a relative weight-
ing method, proportionately weights both harmonic and percus-
sive enhanced spectrograms for the different values of βh and
βp. Since Affine method weights the spectrograms relatively,
for an optimal value of separation parameters, results in a more
smoother, distortion free and tight separation of the harmonic
and percussive components. Unlike other methods, the search
range for the optimal separation parameters in Affine method is
between 0 and 1. Hence, it significantly reduces the search time
for finding optimal βh and βp for tight and smooth separation.
Also, we observed that the Affine masking method results in the
best separation with minimal spectral distortion in the separated
sources for optimal separation parameters. The spectrograms of
the separated harmonic and percussive sources of a mixture of
violin (harmonic) and castanets (percussive) by the proposed
method is shown in 7(a) and 7(b) and the decomposed results
by the state-of-the-art iterative median filtering based method
(HPR-IO) [22] is shown in 7(c) and 7(d). In Fig. 7, the proposed
method uses the Affine masking method with optimal separa-
tion parameters βh = 0.8 and βp = 0.4 obtained from the
plots where the measures SDR and SAR just started to meet in
Fig. 6. The spectrograms for HPR-IO are plotted from the sep-
arated sources available at [28] for the authors best parameter
settings. From Fig. 7, we can observe that the proposed method
clearly preserves the characteristics of the harmonic and per-
cussive sources i.e., horizontal and vertical ridges in the spectro-
gram without introducing much distortion, whereas the HPR-IO
introduces significant artifacts in the spectrograms of the sepa-
rated sources which can be clearly observed in the spectrograms
shown in Figs. 7(c) and 7(d).

The proposed (P) method is compared with the harmonic-
percussive source separation proposed by Fitzgerald (HP) [21]
and iterative harmonic-percussive-residual separation (HPR-
IO) [22] shown in Table 1. The proposed method uses Affine
masking method with optimal separation parameters βh = 0.8
and βp = 0.4 discussed previously with Fourier frequency bins
set to 4096 and MMAF filter length N = 50 along time and
frequency directions. The authors best parameters are chosen
for HP and HPR-IO given in [21] and [22] respectively. From
Table 1, we can observe that the objective measures for the pro-
posed method is significantly better than the HP and HPR-IO
methods. This can be attributed to the high impulsive noise sup-
pression property of MMAF and the relative weighting property
of the Affine masking method strongly preserves the spectral
properties of the harmonic and percussive sources. In future,
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Figure 5: Performance comparison of Binary threshold, Wiener,
Relative and Gain masking methods.
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Figure 6: Objective measure of Affine masking method.

we would like to conduct a rigorous subjective evaluation test
to better understand the perceptual quality of the separated sig-
nals. We would also like to use the separated harmonic source to
detect the vocal and non-vocal regions in the polyphonic music
signal and also to extract the vocal melody from the separated
vocal regions. The decomposed signals are made available at
https://github.com/mgurunathreddy/Harmonic-Percussive.git

10 20 30 40 50 60 70

200

400

600

800

1000

10 20 30 40 50 60 70

200

400

600

800

1000

10 20 30 40 50 60 70

Frame Number

200

400

600

800

1000

F
r
e

q
u

e
n

c
y

 B
in

 N
u

m
b

e
r

10 20 30 40 50 60 70

200

400

600

800

1000

(a) (b)

(c) (d)

Figure 7: Separated spectrograms of the proposed and HPR-IO.

4. Acknowledgements
The authors would like to thank Google for supporting first au-
thor PhD under Google India PhD Fellowship program.

834



5. References
[1] N. Ono, K. Miyamoto, H. Kameoka, J. Le Roux,

Y. Uchiyama, E. Tsunoo, T. Nishimoto, and S. Sagayama,
“Harmonic and percussive sound separation and its appli-
cation to mir-related tasks,” in Advances in music infor-
mation retrieval. Springer, 2010, pp. 213–236.

[2] P. Fernandez-Cid and F. J. Casajus-Quiros, “Multi-pitch
estimation for polyphonic musical signals,” in IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP), vol. 6, 1998, pp. 3565–3568.

[3] R. Badeau, V. Emiya, and B. David, “Expectation-
maximization algorithm for multi-pitch estimation and
separation of overlapping harmonic spectra,” in Acoustics,
Speech and Signal Processing, 2009. ICASSP 2009. IEEE
International Conference on. IEEE, 2009, pp. 3073–
3076.

[4] G. E. Poliner, D. P. Ellis, A. F. Ehmann, E. Gómez, S. Stre-
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