
Acoustic-dependent phonemic transcription for text-to-speech synthesis
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Abstract
Text-to-speech synthesis (TTS) purpose is to produce a speech
signal from an input text. This implies the annotation of speech
recordings with word and phonemic transcriptions. The over-
all quality of TTS highly depends on the accuracy of phone-
mic transcriptions. However, they are generally automatically
produced by grapheme-to-phoneme conversion systems, which
do not deal with speaker variability. In this work, we explore
ways to obtain signal-dependent phonemic transcriptions. We
investigate forced-alignment with enriched pronunciation lexi-
con and multimodal phonemic transcription. We then apply our
results on error detection of grapheme-to-phoneme conversion
hypotheses in order to find where the phonemic transcriptions
may be erroneous. On a French TTS dataset, we show that we
can detect up to 90.5% of errors of a state-of-the-art grapheme-
to-phoneme conversion system by annotating less than 15.8%
of phonemes as erroneous. This can help a human annotator to
correct most of grapheme-to-phoneme conversion errors with-
out checking a lot of data. In other words, our method can sig-
nificantly reduce the cost of high quality TTS data creation.
Index Terms: grapheme-to-phoneme conversion, text-to-
speech synthesis, automatic error detection, multimodal phone-
mic transcription, forced-alignment

1. Introduction
Text-to-speech synthesis (TTS) purpose is to produce a speech
signal from an input text. To build such a system it is nec-
essary to create a speech database (SDB) with text transcrip-
tion. A voice talent is recorded on the reading of selected texts,
which are also transcribed into phonemes. Besides, the speech
is segmented in smaller acoustic units described by phonemes.
Then, two paradigms could be distinguished for TTS: unit se-
lection speech synthesis, where the synthesized speech signal
comes from the selection and the concatenation of acoustic units
[1], and statistical parametric speech synthesis, where acoustic
features of the speech signal are predicted from a sequence of
words [2]. SDBs are either used as acoustic units selection cor-
pora, or as training corpora for acoustic models. In both cases,
phonemic transcription should be very accurate to give satisfy-
ing results. Recently, works showed that many components of
TTS systems can be replaced by neural networks models, using
phonemic descriptors [3, 4, 5] or not [6, 7]. Accurate phonemic
transcriptions are thus still mandatory for TTS components.

Phonemic transcriptions of SDBs are generally obtained by
automatic grapheme-to-phoneme (G2P) conversion of text tran-
scriptions. This can be done at word-level, where words are
considered as isolated, or at sentence-level where lexical con-
text is taken into account. Popular approaches for word-level
G2P conversion are dictionary look-up and joint-sequence mod-
els [8, 9]. Rule-based [10], statistical machine translation [11]

and sequence-to-sequence neural networks models [12, 13] ap-
ply both for word-level and sentence-level G2P conversion.

However, G2P conversion depends only on text transcrip-
tion and cannot be adapted automatically to what speakers pro-
nounce. This is an issue in SDBs annotation, where phone-
mic transcriptions should be manually reviewed to match cor-
rectly the speech signal. French TTS quality is indeed increased
in [14] when phonemic transcriptions are corrected manually.
Moreover, in [15], authors observed improvements of speech
synthesis when phonemic transcriptions are more accurate. Ac-
tually, it is essential to obtain accurate phonemic transcriptions,
which match the speech signal.

In a previous work, we showed we can detect the errors
made by a commercial rule-based G2P conversion system by
comparing the phonemic transcriptions hypotheses produced by
a neural G2P conversion system to a forced alignment between
the speech signal and a pronunciation lexicon [16]. Besides,
we observed the neural G2P conversion hypotheses were more
accurate than the ones produced by the rule-based G2P con-
version system. In this work, we explore different ways to ob-
tain signal-dependent phonemic transcriptions. We improve the
acoustic models used in forced alignment, and investigate the
use of end-to-end monomodal and multimodal phoneme recog-
nition hypotheses. We then evaluate our models to the error de-
tection task, applied to the neural G2P conversion hypotheses,
our best model for phonemic transcription.

The paper is organized as follows. In section 2, we present
the different phonemic transcription systems. Then, we de-
scribe the error detection task in section 3. Finally, we give
the results obtained in both phonemic transcription and error
detection tasks.

2. Phonemic transcription systems
We investigate how to obtain phonemic transcriptions from dif-
ferent modality (speech signal, text) available in TTS datasets.
Our goal is to get the most accurate transcriptions according to
what speakers pronounced during speech recording.

2.1. Joint-sequence model for grapheme-to-phoneme con-
version

A joint-sequence model is a statistical model for sequences of
(graphemes, phonemes) pairs [8, 9]. During the training stage,
sequences of graphemes are aligned to sequences of phonemes.
Then, a language model is trained on the resulting sequences of
(graphemes, phonemes) pairs. At the decoding stage, possible
sequences of phonemes are first generated from the input se-
quences of graphemes, and then the language model determines
the most likely sequence of (graphemes, phonemes) pairs, and
so the best sequence of phonemes.

We were using the Phonetisaurus toolkit [17, 18] and a
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6-gram SRILM language model [19, 20] to build the joint-
sequence model. This model deals with isolated words only,
as it does not model lexical context. That is why we do not
generate directly with it phonemic transcription hypotheses for
SDB annotation. However, we can enrich a pronunciation lexi-
con with its hypotheses and use it for forced alignment.

2.2. Neural sequence-to-sequence model for grapheme-to-
phoneme conversion

G2P conversion systems infer phonemic sequences from text.
However, it is sometimes impossible to choose the right pro-
nunciation of a word only with its spelling. That is why we
built a context-dependent G2P conversion system to take deci-
sions with additional knowledge.
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Figure 1: Architecture of neural sequence-to-sequence
grapheme-to-phoneme conversion model.

We developed a G2P conversion system based on sequence-
to-sequence neural network modeling. The system takes as
inputs sentence-level sequences of characters and outputs se-
quences of phonemes. We chose to follow the encoder-decoder
architecture described in [21] as we dealt with long sequences
with diffent lengths in both input and output (see figure 1).
We used the open-source neural machine translation toolkit
NMTPy [22] to implement our models. The decoder is com-
posed by two gated recurrent unit (GRU) layers interleaved with
attention mechanism and the hidden state of the decoder is ini-
tialized with a non-linear transformation applied to the mean bi-
directional encoder state. We use 64-dimensional embeddings
and 128-dimensional hidden layers. During training, we use
dropout with probability 0.4 after each recurrent layer. We also
use the Adam optimization algorithm with a batch size of 32
and a learning rate of 10−4.

2.3. Acoustic forced alignment for phonemic transcription

Another way to disambiguate word pronunciations is to exploit
the speech signal as it is available in TTS datasets. For this
purpose, we align the text transcription and the speech signal
of SDBs at the phoneme level using an acoustic model and a
pronunciation lexicon containing all the words in the transcrip-
tions.

The acoustic models are trained with the Kaldi speech
recognition toolkit [23]. First, we trained a GMM/HMM acous-
tic model on mel-frequency cepstrum coefficients (MFCC) fea-
tures with feature space maximum likelihood linear regres-
sion (fMLLR) speaker adaptation. Then, we trained a TDNN-
LSTM/HMM acoustic model [24] with 300-dimensional hidden
layers based on the senone alignment from the GMM/HMM
model. The model is taking as inputs 40-dimensional high-
resolution MFCC features and 100-dimensional i-vectors.

The lexicon is first built by applying a commercial rule-
based G2P system on the list of all words of the dataset. As
the G2P conversion is processed without lexical context, sev-
eral pronunciation hypotheses for each word are given. How-
ever, some pronunciations alternatives might still miss for some
words. That is why we enriched the lexicon by adding n-best
hypotheses from the joint-sequence model described in section
2.1. We tried different number of additional pronunciation hy-
potheses to build the pronunciation lexicons, and we processed
the forced alignment with the different enriched lexicons. By
increasing gradually the number of additional pronunciation al-
ternatives, we attempt to show the impact of missing pronunci-
ations in lexicons for forced alignment phonemic transcription.

2.4. End-to-end phoneme recognition

Although forced alignment is based on an acoustic model to
choose which pronunciation of a lexicon is matching the best
the speech signal, this approach still depend strongly on text
and G2P conversion performances. In order to obtain a phone-
mic transcription hypothesis which depend only on the acoustic
signal, we chose to investigate an end-to-end phoneme recog-
nition model. We experimented the Deepspeech 2 architecture
[25] which consists in a neural network with two convolutional
layers and five 800-dimensional bidirectionnal GRU layers. The
model was trained with CTC (Connectionist Temporal Classifi-
cation) function [26] to avoid the need to align the speech sig-
nal and the sequences of phonemes. This mitigates the effect of
alignment errors in training.

bidirectional
GRU layers
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+
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Figure 2: Architecture of end-to-end phoneme recognition
model with additional sentence-level text embedding.

We also investigated the addition of features computed from
text transcriptions. Indeed, it can help the phoneme recognition
to have a knowledge about the text transcription during decod-
ing, in addition to the speech signal. We computed sentence-
level text embeddings with the neural G2P conversion model
described in section 2.2 in two manners:

1. for each sentence, we took the last hidden state of the
encoder as a 256-dimensional vector

2. for each sentence, we took the sum of the hidden states
of the encoder as a 256-dimensional vector

As a bidirectional encoder, (1) is supposed to contain the
history of the whole sentence, and (2) is like a attention mecha-
nism with the same weight for each hidden state. After extract-
ing the embeddings for each sentence, we concatenated these
vectors to the input of the first GRU layer of the end-to-end
phoneme recognition model (see figure 2).

2490



3. Application to error detection of
grapheme-to-phoneme conversion

We obtained contrastive phonemic transcriptions hypotheses
from different sources. They can be infered from speech only,
from text only or from a combination of the two. We apply now
these results to detect the errors made by automatic grapheme-
to-phoneme conversion, especially the ones made by our neural
sequence-to-sequence G2P conversion model. This will allow
a human annotator to improve quickly phonemic transcription
quality by correcting only the TTS dataset parts detected as er-
roneous.

First, we compare the outputs of the neural sequence-to-
sequence G2P conversion model to a manually transcribed ref-
erence. This allow us to label each phoneme of the hypothesis
as correct or erroneous: this annotation is considered the ref-
erence for error detection. Then, we compare phonemic tran-
scription hypotheses from forced alignment and from end-to-
end phoneme recognition to the hypotheses from the neural G2P
conversion model: we put error labels where phonemes are
mismatching and correct labels where phonemes are the same.
This gives the error detection hypothesis. Our goal is to retrieve
with the error detection hypothesis where the error labels are
in the error detection reference.

4. Results
4.1. Evaluation data

We trained our models using internal French TTS datasets con-
taining approximately 50 hours of speech data from 9 speakers
segmented into 90,135 utterances. The results are then given by
testing our models on internal French TTS datasets containing
approximately 1 hour of speech data from 3 speakers segmented
into 951 utterances. All the speech data is transcribed manually
at both word and phoneme level. Even if we can expect better
results by training models on data similar to our use-case, it is
possible to use any corpus prepared for ASR development to
train the acoustic models.

4.2. Phonemic transcription evaluation

We first evaluate our models on the phonemic transcription task,
with the Phone Error Rate (PER) metric. This metric, gener-
ally used in G2P conversion and phoneme recognition, gives
the mean percentage deviation in Levenshtein distance with the
manually corrected phonemic transcription.

We evaluate phonemic transcription at sentence-level. Ta-
ble 1 gives results for G2P conversion systems, table 2 gives
results for forced alignment with different pronunciation lexi-
con, and table 3 gives results for end-to-end speech recognition.

# System PER
(S0) joint-sequence model 9.2
(S1) neural sequence-to-sequence model 2.8

Table 1: Phone error rate (%) for sentence-level G2P conver-
sion

Neural sequence-to-sequence model outperforms joint-
sequence model for sentence-level G2P conversion. Indeed,
joint-sequence model does not take into account lexical con-
text and thus the pronunciation hypotheses of words is the same
for every occurrence.

# System PER
(S2) acoustic forced alignment 4.6

(S2+1) (S2) + 1-best (S0) hypotheses 4.3
(S2+2) (S2) + 2-best (S0) hypotheses 4.9
(S2+3) (S2) + 3-best (S0) hypotheses 5.3

Table 2: Phone error rate (%) for sentence-level acoustic forced
alignment

We see in table 2 that adding the 1-best G2P hypotheses of
the joint-sequence model in the forced alignment lexicon ben-
efits to phonemic transcription. However, the phone error rate
increases when we add more than one pronunciation alternative.
Moreover, the best result is obtained by adding the output given
by the neural sequence-to-sequence model.

# System PER
(S3) end-to-end phoneme recognition 9.9

(S3+last) (S3) + last hidden state of (S1) 10.3
(S3+sum) (S3) + hidden states sum of (S1) 9.6

Table 3: Phone error rate (%) for sentence-level end-to-end
phoneme recognition

End-to-end phoneme recognition accuracy is lower than
G2P conversion and forced alignment phonemic transcription.
However, we observe that it improves results to concatenate to
the input of the recurrent layers the hidden states sum of the
neural sequence-to-sequence model encoder. An information
on the text sequence can thus be managed by the network to
obtain more accurate phonemic transcription.

4.3. Error detection evaluation

We then evaluate error detection results with Precision, Re-
call and Manual Checking Rate (MCR) metrics. Precision
and Recall are standard metrics to evaluate error detection sys-
tems. They indicate respectively the proportion of true alarms
raised by the error detection system and the proportion of de-
tected errors. We introduce also the Manual Checking Rate
(MCR), which shows the amount of data which is annotated
as erroneous by the system:

MCR =
number of phonemes annotated as erroneous

number of phonemes in the reference

In other words, the MCR indicates how much phonemes
should be checked by a human annotator to correct the amount
of errors given by Recall. We want to maximize Precision and
Recall while we want to minimize MCR.

First, we experiment error detection with forced alignment
using different pronunciation lexicons. We use the baseline lex-
icon, and then add progressively to this lexicon the one, two and
three bests hypotheses of the joint-sequence model. This allows
us to cover more pronunciation variants in the lexicon and thus
gives more liberty to the acoustic model. Table 4 gives the
results in terms of Precision, Recall and MCR.

We observe the best Precision and MCR are obtained with
the addition of the one best G2P hypotheses of the joint-
sequence model in the forced alignment lexicon. This mean
with this configuration we can detect 68.9% of G2P errors by
checking manually only 5.1% of the dataset. However, if we
want to correct more errors, we can enrich the forced alignment
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# System Precision Recall MCR
(0) (S2) 35.0 67.8 5.3
(1) (S2+1) 36.7 68.9 5.1
(2) (S2+2) 34.1 75.2 6.0
(3) (S2+3) 32.4 77.3 6.5

Table 4: Evaluation of error detection with forced alignment

lexicon more and then detect up to 77.3% of errors. This re-
quires checking manually 6.5% of the dataset.

Table 5 gives the evaluation results of G2P conversion error
detection with end-to-end phoneme recognition. The model (4),
which only takes into account the speech signal, obtained the
best Recall of the three models with 81.8%. However, if we
need to check less than 12% of the dataset, the model (6) can
detect 79.6% of G2P conversion errors, which is more than what
we have with forced alignment.

# System Precision Recall MCR
(4) (S3) 18.2 81.8 12.2
(5) (S3+last) 18.1 80.7 12.1
(6) (S3+sum) 18.0 79.6 12.0

Table 5: Evaluation of error detection with end-to-end phoneme
recognition

Finally, we combined forced alignment and end-to-end
phoneme recognition for error detection by comparing the con-
trastive hypotheses of the two systems to the sentence-level G2P
conversion hypotheses. Table 6 shows the error detection re-
sults obtained with this combination.

# System Precision Recall MCR
(7) (0)+(4) 15.5 87.2 15.2
(8) (1)+(4) 15.7 87.4 15.0
(9) (2)+(4) 15.7 89.7 15.5

(10) (3)+(4) 15.5 90.2 15.8
(11) (0)+(5) 15.6 87.4 15.2
(12) (1)+(5) 15.8 87.2 14.9
(13) (2)+(5) 15.7 89.7 15.5
(14) (3)+(5) 15.5 90.5 15.8
(15) (0)+(6) 15.4 86.3 15.2
(16) (1)+(6) 15.6 86.5 15.0
(17) (2)+(6) 15.5 88.7 15.5
(18) (3)+(6) 15.3 89.5 15.9

Table 6: Evaluation of error detection with combination of
forced alignment and end-to-end phoneme recognition

The error detection task benefits more from the combina-
tion between forced alignment and end-to-end phoneme recog-
nition with the last hidden state of neural G2P conversion sys-
tem encoder as external embedding. Indeed, we obtain the best
Precision and MCR with combination (12), where we get 15.8%
of Precision and 14.9% of MCR, and we obtain the best Recall
with combination (14), where we have with 90.5% the maxi-
mum error coverage of all systems.

In short, depending on the trade-off we want between Re-
call and MCR, we need to choose between only forced align-
ment, which gives the best MCR, only phoneme recognition,
which gives average results, or a combination of forced align-
ment and phoneme recognition, which gives the best Recall.

Besides, sentence-level text embeddings of both types used dur-
ing phoneme recognition gives interesting results for error de-
tection.

5. Conclusion
We investigated different ways to obtain phonemic transcrip-
tion of TTS datasets when speech signal and text are available.
We compared joint-sequence modeling and neural sequence-to-
sequence grapheme-to-phoneme conversion, forced alignment
with enriched pronunciation lexicon, and end-to-end phoneme
recognition. As we wanted to benefit from both speech sig-
nal and text as the same time for phonemic transcription, we
showed we can successfully extract sentence-level embeddings
from sequence-to-sequence grapheme-to-phoneme conversion
model and use them during phoneme recognition. Finally, we
apply our different models to the task of detecting grapheme-to-
phoneme conversion errors. With the combination of the con-
trastive phonemisation hypotheses we obtained, we showed on
a French TTS dataset we can detect up to 90.5% of errors by la-
belling only 15.8% of phonemes as doubtful. This means a hu-
man annotator can improve drastically the quality of a TTS cor-
pus in a limited amount of time, by correcting only the dataset
parts annotated as erroneous. Further work will consist in ex-
ploring other use cases for multimodal phonemic transcription
and grapheme-to-phoneme error detection.
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[16] K. Vythelingum, Y. Estève, and O. Rosec, “Error detection of
grapheme-to-phoneme conversion in text-to-speech synthesis us-
ing speech signal and lexical context,” in 2017 IEEE Automatic
Speech Recognition and Understanding Workshop, 2017.

[17] J. R. Novak, P. R. Dixon, N. Minematsu, K. Hirose, C. Hori, and
H. Kashioka, “Improving wfst-based g2p conversion with align-
ment constraints and rnnlm n-best rescoring,” in Proceedings of
InterSpeech, 2012.

[18] J. R. Novak, N. Minematu, and K. Hirose, “Failure transitions
for joint n-gram models and g2p conversion,” in Proceedings of
InterSpeech, 2013.

[19] A. Stolcke, “Srilm – an extensible language modeling toolkit,” in
Proceedings of InterSpeech, 2002.

[20] A. Stolcke, J. Zheng, and W. Wang, “Srilm at sixteen: Update and
outlook,” in Proceedings of IEEE Workshop on Automatic Speech
Recognition and Understanding, 2011.

[21] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine transla-
tion by jointly learning to align and translate.” in International
Conference on Learning Representations (ICLR), 2015.

[22] O. Caglayan, M. Garcı́a-Martı́nez, A. Bardet, W. Aransa,
F. Bougares, and L. Barrault, “Nmtpy: A flexible toolkit for
advanced neural machine translation systems,” Prague Bull.
Math. Linguistics, vol. 109, pp. 15–28, 2017. [Online]. Available:
https://ufal.mff.cuni.cz/pbml/109/art-caglayan-et-al.pdf

[23] D. Povey, A. Ghoshal, G. Boulianne, L. Burge, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz,
J. Silovsky, G. Stemmer, and K. Vesely, “The kaldi speech recog-
nition toolkit,” in Proceedings of IEEE Workshop on Automatic
Speech Recognition and Understanding (ASRU), 2011.

[24] V. Peddinti, Y. Wang, D. Povey, and S. Khudanpur, “Low latency
acoustic modeling using temporal convolution and lstms,” IEEE
Signal Processing Letters, vol. 25, no. 3, pp. 373–377, 2018.

[25] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper,
B. Catanzaro, J. Chen, M. Chrzanowski, A. Coates, G. Diamos,
E. Elsen, J. Engel, L. Fan, C. Fougner, T. Han, A. Y. Hannun,
B. Jun, P. LeGresley, L. Lin, S. Narang, A. Y. Ng, S. Ozair,
R. Prenger, J. Raiman, S. Satheesh, D. Seetapun, S. Sengupta,
Y. Wang, Z. Wang, C. Wang, B. Xiao, D. Yogatama, J. Zhan,
and Z. Zhu, “Deep speech 2: End-to-end speech recognition
in english and mandarin,” CoRR, vol. abs/1512.02595, 2015.
[Online]. Available: http://arxiv.org/abs/1512.02595

[26] A. Graves, S. Fernndez, F. Gomez, and J. Schmidhuber, “Connec-
tionist temporal classification: labelling unsegmented sequence
data with recurrent neural networks,” in Proceedings of the 23rd
International Conference on Machine learning, 2006, p. 369376.

2493


