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Abstract 

This paper describes a unified Deep Metric Learning (DML) 
framework to predict the target cost directly by supervised 
learning method. The conventional methods to calculate the 
target cost include two separate steps: feature extraction and 
standard distance measurement. The proposed DML 
framework aims to measure the similarity between the 
candidate units and the target units more reasonably and 
directly. Firstly, the symmetrical DML framework is pre-
trained to learn the metric between pairs of candidate units and 
target units. The relabeling procedure is added to correct the 
initial designed labels of the target cost. Secondly, the acoustic 
features of the target units are removed, which fits the runtime 
of the unit-selection synthesizer. The asymmetrical DML is 
fine-tuned to learn the metric between candidate units and 
target units. Compared with the conventional methods, the 
proposed unified DML framework can avoid the accumulation 
of errors in separate steps and improve the accuracy in 
labeling and predicting the target cost. The evaluation results 
demonstrate that the naturalness of synthetic speech has been 
improved by adopting DML framework to predict target cost.  
Index Terms: speech synthesis, unit-selection, target cost, 
deep metric learning 

1. Introduction 

The unit-selection speech synthesis [1] has been challenged by 
the statistical parametric speech synthesis (SPSS) [2] and 
advanced methods (WaveNet, Deep Voice, Tacotron) [3-9] 
recently. However, the above advanced methods still need 
more delicate works in computational efficiency and 
robustness. And the SPSS system tends to generate “average” 
speech which would defect the perception of sound. When the 
speech corpus is highly-curated or the studio-level quality of 
the synthetic speech is required, the unit-selection synthesizer 
is preferred. 

One of the core problem for unit-selection synthesizer is 
the discontinuousness between the selected adjacent basic 
units. People would identify that the selected sequence of units 
are extracted from difference utterances when acoustic clues 
(such as the intonation, the speaking style, and the speed) are 
unmatched, which would defect the perception of sound.  

The target cost and the concatenation cost are defined to 
decide the best candidate from the corpus database. The target 
cost is designed to select the proper candidates from the 
database. The concatenation cost is designed to select adjacent 
units sound more coherently. The target cost, the metric of the 
similarities between candidate units and target units, is the 
foundation of selecting the proper combination of candidate 
units. And the target cost is different to define and predict.  

Hunt and Black first presented current form of unit-
selection speech synthesis system. The linguistic features were 
applied for target cost calculation.  Then the hybrid unit-
selection method added the acoustic features, which was 
predicted by the statistical model, for target cost calculation 
[10]. And several improvements were proposed, such as using 
the Deep Neural Networks (DNN) to generate the guiding 
acoustic parameters [11-13]. To avoid the error in extracting 
features from generated acoustic parameters, recurrent mixture 
density networks (MDNs) were applied for predicting target 
and concatenation distributions [14]. These features included 
duration, Mel-Frequency Cepstral Coefficient (MFCC), 
fundamental frequency (f0) and their dynamic counterparts. 

The features that the above methods applied were hand-
crafted. The automatic features generating methods were 
proposed. The frame-level embedding was extracted from the 
intermediate layers of a DNN [15] or a long short-term 
memory (LSTM) [13] network. In both cases, the unit-level 
embedding was constructed heuristically rather than being 
extracted from the whole unit directly. Then a sequence to 
sequence LSTM-based auto-encoders method was proposed to 
encode variable-length audio to a fixed-length vector [16]. The 
metric of the trained embedding was designed to represent the 
acoustic similarities between units. 

The above methods mainly included two separate steps: 
feature extraction and standard distance measurement. These 
methods focused on finding and improving the accuracy of the 
intermediate representations for acoustic similarity. The target 
cost was calculated by standard distance measurement (e.g.  
��, ��  norm). The intermediate representations might not be 
good enough to reveal differences between units. On the 
contrary, this paper proposes a unified Deep Metric Learning 
framework that measures the candidate units and the target 
units directly. The input of the DML framework is the 
asymmetric pair from the candidate units and the target units. 
And the internal structure of DML framework can predict the 
acoustic features based on the linguistic features of target units. 
The output is the target cost for unit-selection synthesizer, 
which is predicted by the supervised metric learning method.  

Metric learning methods [17-19] had achieved state-of-
the-art results in some areas. Compared with standard distance 
measures, the learned metric is more discriminative for the 
task. The features of pairs that above metric learning methods 
extracted are symmetric. In the runtime of the unit-selection 
synthesizer, the input is only text, which is the target linguistic 
features. Meanwhile, the candidate units have linguistic 
features and acoustic features. The features of candidate units 
and target units are asymmetric. 

The main idea of the DML is inspired by a “Siamese” 
neural network for person re-identification task [20]. Their 
work is to use a “Siamese” DNN [21] to assess two person 
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images. In their work, the cosine layer is used as the last layer.  
For two persons images x and y, the similarity equation can be 

written as s = ��������(�), �(�)�, where B denotes the sub-
networks. Different from their work, the sub-network adds 
module that can model the mapping between linguistic 
features and acoustic features. The features extraction module 
is modified for fusing two channels of features. And two 
stages training is applied to tackle the asymmetric pair of the 
input and the inaccuracy of the target cost labeling. 

The main contribution of this paper can be summarized 
as followed: 
 The DML framework can learn a similarity metric 

between the candidate units and the target units directly, 
which is more effective than conventional methods 
including feature extraction and standard distance 
measurement two separate steps. 

 Compared with the initial hand-crafted designed label, 
the DML framework can improve the accuracy of the 
target cost labeling  

  Transfer learning method is applied for the training of 
the DML framework. The knowledge about acoustic and 
linguistic features extraction, which is acquired from the 
pre-training, is transferred to the asymmetric DML 
framework for target cost predicting. 

The rest of the paper is organized as follows: Section 2 
proposes the DML frameworks with pre-training and fine-
tuning stages. Section 3 presents the experiments. And the 
results and analysis are presented in Section 4. The 
conclusions and future work are discussed in Section 5. 

2. Deep Metric Learning Framework        

Most of the neural network works in a standalone mode. The 
input of neural network is a sample and the output is a 
predicted label. For the metric learning between candidate 
units and target units, the DML framework is constructed to 
allow the two sub-networks work in a “sample pair → label” 
mode. The DML framework has two steps including pre-
training and fine-tuning. The main procedure and structure of 
the DML framework can be concluded as the Figure 1.  

In the pre-training stage, we select a part of the database 
as the target units. Both candidate units and target units have 
linguistic and acoustic features as the input of the symmetric 
DML framework. And the target cost label for the training is 
calculated by acoustic similarity between candidate audio and 
target audio, which is defined as the initial designed label. 
After finishing the pre-training stage, the predicted output 
replaces the initial designed label for the fine-tuning stage, 
which is called the relabeling procedure.  In the fine-tuning 
stage, the branch of the target acoustic features is removed. 
And the rest of the asymmetric DML framework is fine-tuned 
in this stage. The input of target units is only linguistic 
features and the output is the predicting target cost for unit-
selection synthesizer.  

2.1. Training unit pairs selection and labeling 

We select the training unit pairs based on whether the two 
units have the same vowel or consonant. If two units have 
different pronunciation, they are marked as the negative pair. 
The positive pairs are same pronunciation of units, which is 
selected based on rank from the pre-selection procedure of the 
unit-selection synthesizer [22]. Different from the regular pair 
label for metric learning, the initial designed label for pre-
training stage is designed as follow: all the negative pairs are 
all labeled as -1. For the positive pairs, the Kullback Leibler 
divergence (KLD) of the four sub-unit sections between units 
are computed. The positive pairs are labeled in the range of 
(0.5, 1] based on the weighted normalized sums of the KLDs.  

2.2. Pre-training of the symmetric DML framework 

The input for each step of the symmetric DML framework is a 
pair of candidate and target units, which is candidate linguistic 
and acoustic features ��, �� and target  linguistic and acoustic 
features  ��, ��  respectively.  They are first passed into the 
convolutional neural network (CNN) separately. The linguistic 
features ��  and ��  are processed by CNN-L, while the 
acoustic features ��  and ��  are processed by CNN-A. In the 
combined branch C, the output of the CNN-L and the CNN-A 
are fusing together before the fully connected layer. Then the 
fused CNN output is connected to the DNN1 and DNN2 
separately. And the output of DNNs is connected to the cosine 

Figure 1: Flowchart of the unified deep metric learning framework (Left) and the 1D-CNN structure (Right). Positive and 
negative unit pairs are feed into the symmetric DML framework for pre-training. After finishing the pre-training, the relabeling 
procedure replaces the initial designed label to the predicted similarity results. In the fine-tuning stage, positive pairs with target 
linguistic features are feed into the asymmetric DML framework, which accords with the runtime of unit-selection. The predicted                    
output of the fine-tuning stage is the target cost for unit-selection synthesizer.  
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layer that calculates the linguistic and acoustic combined 
similarity. In another acoustic branch A, the output of the 
CNN-A is connected to the acoustic cosine layer directly. The 
similarities are calculated by 

s� =
��(��)���(��)

���(��)���(��)���(��)���(��)
                     (1) 

s� =
��(��,��)���(��,��)

���(��,��)���(��,��)���(��,��)���(��,��)
       (2) 

where A�, A�, C� and  C� are the functions of the two branches 
respectively. 
Finally, the cosine fusion layer output the target cost �� 

combined the s� and s�  by the coefficient α (0 ≤∝≤ 1) 

�� = (1 − α)s� + αs�                            (3) 

In the pre-training process, the two CNN-L for preprocessing 
the linguistic features of candidate and target share the same 
weights and bias. Besides, the two CNN-As and two DNNs 
also share the same weights and bias. After the pre-training 
stage is finished, the �� predicted by the symmetric DML 

framework become the new label of the input pair. 

2.3. Fine-tuning of the asymmetric DML framework 

In the fine-tuning stage, the target units have only linguistic 
features �� , which suits the runtime of the unit-selection 
synthesizer. The acoustic branch A and the CNN-A for 
processing the target acoustic features are removed.  Only the 
positive pairs are feed to the asymmetric DML framework for 
fine-tuning. The label is the target cost predicted in the pre-
training stage. In the training process, all the parameters are 
inherited from the pre-training stage. Only the weights and 
bias of DNN2 is fine-tuned. The weights and bias of CNN-L, 
CNN-A, and DNN1 are fixed. After the fine-tuning stage is 
finished, the �� predicted by the asymmetric DML framework 
is the target cost for the unit-selection synthesizer. 

3. Experiments 

3.1. Database 

A Mandarin database, which contains 30,000 phonetically rich 
sentences from a professional male broadcaster, is adopted in 
this paper. For the experiments described in this paper, the 
audio was down-sampled to 16 kHz.  The 24,000 sentences of 
the database are chosen randomly as the candidates. The rest 
of the 6,000 sentences are chosen as the targets, in which 
5,600 sentences as training set, 200 sentences as validation set, 
and the rest 200 sentences are reserved as test set. In the 
training set, each unit of sentences generates 50 pairs, which 
include 25 positive pairs and 25 negative pairs. Each utterance 
has around 15 units. To sum up, there are about 4 million unit 
pairs for pre-training and 2 million pairs for fine-tuning. 

The linguistic features, which contain the phonetic and 
prosodic contexts of Mandarin in each unit, can be included as 
follows: The phone identity, the position of a phone, syllable 
and word in phrase and sentence, POS of word, prosodic 
phrase, intonational phrase and sentence, the length of 
prosodic word, prosodic phrase, intonational phrase and 
sentence, etc. The dimension of the acoustic features is 504. 

To extract a fixed dimension of the acoustic features, 
each unit is equally divided into 4 sections. And the MFCC, 
fundamental frequency ��  and duration are extracted in each 
section. The mean and variance of above are computed as the 

acoustic features of each unit. The input continuous features 
are normalized to the range of (0,1] and the input discrete 
features are encoded in One-Hot. The dimension of the 
acoustic features is 196.  

3.2. Experimental setup 

Backpropagation (BP) [23] is used to learn the parameters of 
the DML framework. Square loss is used as the cost function. 
Given a sample pair’s similarity  �  (−1 ≤ � ≤ 1)  and their 
corresponding label �   (−1 ≤ � ≤ 1) , the cost function is 
written as 

������� = (� − �)�                            (4) 

In the pre-training stage, the size of batch is 128 including 64 
positive and 64 negative pairs. The number of negative pairs is 
far more than positive pairs. Therefore, we randomly select 
negative pairs from the whole negative sample pool for each 
batch. In the fine-tuning stage, the size of batch is 128 
including 128 positive pairs. And the output dimension of the 
DNN is 256. The ReLU neuron [23] is used as activation 
function for each layer. 

Two baselines about the calculation of target cost have 
been applied for comparison: 

 Baseline1: It uses BLSTM based SPSS system to 
generate the acoustic parameters first and then calculate 
the KL divergence to get the final target cost [22].  

 Baseline2: It uses BLSTM to predict the features, 
including mean and variance of the acoustic features in 
the 4 sub-units, to calculate the final target cost directly 
without generating the whole acoustic parameters 
sequence [14].  

The basic unit in our experiment is vowels or consonants 
of the Mandarin, which resemble the syllables of the English. 
And a Viterbi search is used to find the best sequence that 
minimizes the combined cost. The combined cost is defined as: 

� = �������� + ��������������                     (5) 

where �  denotes the target cost weight, �������  denotes the 

target cost, and �������������� denotes the concatenation cost. 
Except for the calculation of the target cost, the other modules 
are described in [22].  

3.3. Objective evaluation  

To evaluate the accuracy of the predicted target cost, the root 
mean square error (RMSE) between the predicting target cost 
and the initial designed label of the test set is chosen as the 
objective metric. The target costs predicted by the two 
baselines are all normalized to the range of [0.5, 1] by the 
same scale used for the labeling the initial designed target cost. 
Different values of coefficient α is tested in the training of the 
DML.  

3.4. Subjective evaluation 

To evaluate the performance of unit-selection synthesizer with 
the modification of the target cost, 30 native speakers are 
arranged to evaluate the synthetic speech based on a 5-point 
discrete scale Mean Opinion Scores (MOSs) [24] labeled 
“Bad”, “Poor”, “Fair”, “Good”, and “Excellent”. Each listener 
listens to 30 pairs random selecting sentences synthesized in 
each system. To investigate contribution that relabeling 
procedure for the training of the DML, a contrast experiment 
that uses the initial designed label to fine-tuning the 
framework is conducted, which is marked as “UR-DML”. 
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Different target cost weight �  are tested to investigate the 
contribution of the target cost to the whole unit selecting 
procedure. 

4. Results 

As illustrated in the Figure 2, the proposed DML framework 
predicts the target cost more precisely than the two baselines. 
It illustrates that the DML can avoid the accumulation of 
errors in each module in the baseline methods. The cost 
function and structure let the DML framework to focus on the 
mission directly, which is predicting the acoustic similarity 
between the candidate units and the target speech. The 
knowledge about the extracting and preprocessing the 
linguistic and acoustic features is acquired from the pre-
training of the symmetric DML framework. And the ability 
that let the partial asymmetrical DML framework predict the 
similarity with only linguistic features of targets is learned by 
fine-tuning the DNN in the branch of the target. The global 
optimal of DML achieves better performance than the sub-
optimal of each module in the baselines. 

The minimal RMSE is 0.055 when the coefficient α is set 
to 0.6 in the DML method. The following subjective 
evaluations are conducted on the same condition. Observing 
the fluctuation of RMSE in the DML method, the RMSE is 
decreasing while the coefficient α is decreasing from 1 to 0.6. 
It suggests that the introduction of acoustic metric module �� 
in the pre-training stage can prevent the DML framework from 
learning the metric highly depending on the linguistic and 
ignoring the acoustic features. The attribute of many linguistic 
features is discrete, while all the attribute of acoustic features 
are continuous.  Due to the subtle differences of acoustic 
features between units, the linguistic features are more 
sensitive to discriminate differences. If we only use the 
combined cosine layer alone in the pre-training procedure, the 
DML framework is prone to predict the target cost mainly 
based on the linguistic features, which deviates the motivation 
of the acoustic similarity metric.  

Figure 2: RMSE of the predicted target cost using different 
coefficient �  and systems. BASELINE 1 and BASELINE 2 
systems have no � and are expanded to a line for comparison. 

Observing the MOS results illustrated in the Figure 3, the 
best MOS is 3.85 when the target cost weight is 1.5 in the 
DML experiment. The proposed DML with relabeling 
procedure achieves better performance than the baselines. And 
it also outperforms the UR-DML. These results indicate that 
the relabeling procedure corrects the initial designed label. 
The DML framework networks structure with “sample 

pairs→label” training mode can learn the knowledge about 
finding the similarity better. The motivation of the DML 
framework is to find the best positive pair rather than to judge 
whether the pair is similar. With the guidance of initial 
designed label, the DML structure is trained to extract better 
intermediate representations than hand-crafted features in 
acoustic similarity metric. 

The MOS of baseline 1 and baseline 2 systems both 
decrease when the weight of the target cost increases. It 
indicates that target cost calculated by baselines could not 
reflect the similarity properly and the systems mainly depend 
on the concatenation cost to select the candidates. The target 
cost losses its designed function. Meanwhile, the systems with 
the DML method perform better when the weight of the target 
cost is increasing in certain range. It illustrates that the target 
cost of the DML is more precisely to measure the similarity 
between the candidates and the targets and can help the unit-
selection to select the candidates better. 

 
Figure 3: MOS test for naturalness of synthetic speech 
using different target cost weight � and systems. 

5. Conclusion 

We present a unified Deep Metric Learning framework 
including pre-training and fine-tuning for the target cost in the 
unit-selection based synthesis system.  The target cost is 
predicted directly, which avoids the accumulation of errors in 
each module. The “sample pair → label” training mode and the 
relabeling procedure improve the performance of the DML 
framework. We report an improvement of up to 0.13 MOS 
compared with the baseline using the BLSTM-guided hybrid 
method. 

 This paper focus on acquiring the target cost more 
directly and reasonably. However, the defined target cost in 
our method still involves human knowledge. In the future, the 
similarity between audio still need to be explored by using 
more delicate semi-supervised methods. Besides, the target 
cost is only part of the unit-selection synthesizer, the more 
direct method to choose a proper sequence of candidate units 
without calculating the target cost and the concatenation cost 
first is also our research focus. 
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