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Abstract

Recent end-to-end models for automatic speech recognition use
sensory attention to integrate multiple input channels within a
single neural network. However, these attention models are sen-
sitive to the ordering of the channels used during training. This
work proposes a sensory attention mechanism that is invariant
to the channel ordering and only increases the overall parameter
count by 0.09%. We demonstrate that even without re-training,
our attention-equipped end-to-end model is able to deal with
arbitrary numbers of input channels during inference. In com-
parison to a recent related model with sensory attention, our
model when tested on the real noisy recordings from the multi-
channel CHiME-4 dataset, achieves a relative character error
rate (CER) improvement of 40.3% to 42.9%. In a two-channel
configuration experiment, the attention signal allows the lower
signal-to-noise ratio (SNR) sensor to be identified with 97.7%
accuracy.

Index Terms: end-to-end speech recognition, multi-channel,
attention mechanism

1. Introduction

In recent years, end-to-end models are being considered for au-
tomatic speech recognition (ASR) [1, 2, 3, 4,5,6,7, 8,9, 10]
as they present a simplification in both the model architec-
ture and training process over conventional DNN-HMM hy-
brids [11, 12]. End-to-end models transcribe speech to text
with a single neural network, replacing the combination of sep-
arate deep neural network (DNN) acoustic models and hidden
Markov models (HMMs). The simplified model learns the map-
ping from acoustic feature to character sequences in a single
training process, thereby avoiding the disjoint multi-stage train-
ing procedures for hybrid ASR systems.

While most ASR research with end-to-end models focused
on single-channel scenarios, the multi-channel scenario is less
explored. Many real-world ASR applications (e.g. Amazon
Echo, voice-control systems in cars etc.) deal with speech from
multiple microphones in noisy environments, and their accuracy
relies on methods that robustly pre-process multi-channel in-
puts, ideally avoiding noise corruption and generating a cleaner,
enhanced signal. In this context, conventional beamforming al-
gorithms are widely used to extract a single enhanced chan-
nel from multi-channel setups, but they introduce a separate
beamforming processing stage which is typically optimized in-
dependently from the ASR objective. Alternate approaches for
multi-channel integration are based on methods that leverage
convolutional neural networks (CNNs) for channel combination
[13, 14, 15], that learn a beamforming function with neural net-
works [16, 17, 18, 19, 20, 21], and attention mechanisms that fo-
cus on higher signal-to-noise ratio (SNR) channels [22]. While
these methods are differentiable and suitable for joint optimiza-
tion in an end-to-end model, they were usually combined with
conventional hybrid ASR approaches.

To the best of our knowledge, only two recent studies
[23, 24] have examined multi-channel ASR and meet the cri-
teria of a strict end-to-end scenario, i.e. training a single neu-
ral network model towards the ASR objective only and testing
without a separate lexicon or language model. In both studies,
inputs from the multiple channels are combined into a single
representation that is used for the classification task. In one
case, a neural beamformer is used to combine the channels [24]
and in the second case, a sensory attention mechanism [23]
is used instead. While both approaches show promising per-
formance compared to conventional beamforming, the neural
beamformer shows benefits such as invariance to channel re-
ordering and robustness to channel configurations that were not
used during training.

In this work, we propose a sensory attention mechanism
that follows a similar, but not identical design strategy as in [23].
Our proposed design shows invariance to channel re-ordering
and the design is simplified by using long short-term mem-
ory (LSTM) and dense units instead of a custom-designed neu-
ral network cell. We evaluate the use of this sensory attention
mechanism in an end-to-end ASR model and compare our re-
sults with related models [23, 24] on the CHiME-4 dataset. We
demonstrate that our attention-equipped end-to-end model can
process new channel configurations without re-training, and that
the sensory attention signal is strongly correlated to the channel
SNR.

2. End-to-end multi-channel ASR model

We first present the two main components of our end-to-end
model for multi-channel ASR, that is, the sensory attention
mechanism described in Subsection 2.1, and the acoustic model
described in Subsection 2.2. The block diagram of this model
is given in Figure 1.

2.1. Sensory attention mechanism

The attention mechanism combines multiple input channels into
a single representation by summing the dynamically weighted
frames from individual channels.

We consider a multi-channel setup with ¢ = 1, ..., N micro-
phone channels. We assume that the input time series of every
channel is binned into t = 1, ..., T frames and that each channel
¢ produces a D-dimensional feature vector ff € RP for every
frame ¢. The merged representation m; € R” is generated as
follows:
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Figure 1: Architecture of our proposed model for end-to-end ASR from multi-channel inputs. Depicted is the case of two input channels.
Input feature vectors f{ are weighted and summed to create the merged representation my, which is then used for classification. The
attention mechanism suppresses noisy frames irrespective of the channel, resulting in a cleaner merged representation.

The scoring function Z produces attention scores zf € R!
based on the feature frames of channel ¢ (Equation 1). The
attention weights of € R* are computed by performing a soft-
max operation on the attention scores z{ € {2}, ..., z{' } (Equa-

tion 2), and thus .

=1 %

c

= 1. Finally, the individual feature

frames f; are weighted by the corresponding attention weights
«f and summed into the merged representation m; (Equation 3)
which is then presented to the acoustic model.

The scoring function Z is arbitrary and can be modelled us-
ing neural networks. In our experiments, we implemented Z us-
ing 10 LSTM units [25] followed by a single dense unit (weight
W, bias b) with a SELU non-linearity [26] (Equation 4):

Z(fi.1) = SELU(W - LSTM(f1..) +b) ©)

The use of LSTM units is convenient because past history is
automatically considered.

By design, our sensory attention mechanism has the fol-
lowing useful properties. First, it is a soft attention mechanism
which is fully differentiable and therefore, suitable for end-to-

end optimization.

Second, the attention weights af at each

frame t indicate the contribution of single channels to frame
t of the merged representation. Third, because the attention
weights are re-computed on every frame, they can dynamically
adjust for temporal changes in signal quality (e.g. temporary
noise corruption) of each channel. Fourth, as the same scoring
function Z is used for all input channels, the attention mech-
anism is invariant to channel re-ordering. Finally, because the
scoring function Z evaluates each channel independently from
other channels, channels may be removed or new channels may
be added after training.

2.2. Acoustic model

The acoustic model receives as input, the merged representa-
tion generated by the sensory attention mechanism. It is com-
posed of a convolutional front-end (CFE) followed by a stack

of LSTM units.

The CFE is made of three convolutional blocks. Each block
performs a function f that includes a 2D convolution, a 2D
instance normalization [27] and a clipped ReLU non-linearity

o(xz) = min{max(z, 0),20}) [28]:

f(z) = o(InstanceNorm2d(Conv2d(z))) Q)
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2.3. Related work

The CFE operates on spectrogram features. As the CFE uses a
temporal stride of 2 in the first layer, it effectively halves the se-
quence length and reduces training time. Our CFE implementa-
tion is closely related to the DeepSpeech2 CFE, where a similar
configuration helped to improve error rates especially in noisy
conditions [3]. Therefore, the proposed acoustic model should
provide a noise robust baseline model. The main difference of
our implementation from that of DeepSpeech?2 is that we use
instance normalization (sample-wise normalization) instead of
batch normalization (batch-wise normalization) and we do not
keep mean and variance statistics from training to be applied
during normalization at test time. On the four different noise
environments of CHiME-4, using mean and variance statistics
computed across samples from different environments for nor-
malization, decreases our model performance therefore we use
instance normalization.
The CFE is followed by a stack of bidirectional LSTM units
and the final output layer is an affine transform to the class la-
bels. We use the Connectionist Temporal Classification (CTC)
[29] objective to automatically learn the mapping and alignment
between input features and label sequences. The model is tested
with strict end-to-end criteria and without use of external lexi-
cons or language models. We use greedy decoding on the CTC
output: at each time step, the most likely label is selected.

We compare our model to related work on multi-channel end-to-
end ASR without additional lexicons or language models. The
ATTMULTI-E2E model [23] combines multiple input channels
into a single representation with a sensory attention mechanism
based on weighted summation. Their attention mechanism has
three main differences to our work: (1) it operates on filter-
bank features while ours operates on spectrogram features, (2)
it uses a custom designed neural network cell to compute atten-
tion scores while we use generic LSTM and dense units, (3) by
design, it is not invariant to channel re-ordering in contrast to
ours which is invariant. The MASK_NET (ATT) model [24] ap-
plies an attention mechanism to select the reference microphone
for a neural beamformer. In contrast to the ATTMULTI-E2E
and our proposed model, the channels are not combined by a
sensory attention mechanism but rather by using a neural beam-



former. The neural beamformer is also able to exploit spatial
information, which is not considered by ATTMULTI-E2E and
our model. Both ATTMULTI-E2E and MASK_NET (ATT) use
a CTC+Encoder/Decoder hybrid model that is trained with a
joint CTC-attention multi-task objective [10], while our model
is trained with an encoder (i.e. the acoustic model) and standard
CTC objective only.

3. Experiments
3.1. Dataset

All experiments are carried out as ASR tasks on the CHiME-4
data-set [30] which provides real and simulated noisy speech
data from a tablet device with 6 microphones. Recordings were
done in four noisy environments: a cafe, a street junction, pub-
lic transport and a pedestrian area. The real data was recorded
with the tablet device, while the simulated data was obtained
by mixing clean utterances from WSJO [31] with environment
background recordings. The tablet device provided 5 micro-
phones facing the speaker and 1 microphone facing away from
the speaker (backward channel #2, the noisiest of all). For train-
ing we use both real data (’tr05_real’, 1600 samples) and simu-
lated data (’tr05_simu’, 7138 samples).

The audio samples are pre-processed into 161-dimensional
spectrogram features with the short-time Fourier transform
(STFT). First, the STFT-coefficients are computed (20 ms
frame length, 10ms frame shift, Hamming window) and then
the log of the magnitude of the STFT-coefficients is kept. The
features are further normalized to zero mean and unit variance
per sample. The output labels consist of 59 distinct labels such
as characters and digits and are obtained with the EESEN pre-
processing routines [5].

3.2. Models

In total, 5 different models are evaluated: NOISY,
BEAMFORMIT, MVDR, MC-AVG and MC-ATT. The NOISY
model is trained and evaluated only on channel 5. It provides a
baseline for a model optimized on the best-performing channel.
All other models are trained and tested on the front channels
1/3/4/5/6, but differ in their channel combination strategies. The
BEAMFORMIT model uses a delay-and-sum beamformer [32],
while the MVDR model uses a minimum variance distortionless
response (MVDR) beamformer based on the implementation
provided by the CHiME authors [30]. Both beamformers pro-
duce enhanced waveforms in a separate pre-processing stage
that is not optimized towards the ASR objective, and so their
corresponding models are not considered as end-to-end mod-
els. The MC-ATT model uses our proposed sensory attention
mechanism (Subsection 2.1) to merge the input channels. In
order to assess the effectiveness of this attention mechanism,
we compare the MC-ATT model against an averaging model,
MC-AVG, that assigns fixed attention weights of = 1/5 for
the five input channels. We do not include the simple channel
concatenation strategy, because it is not inherently invariant to
channel re-ordering (see [23]) and it complicates channel ad-
dition or removal after training because the acoustic model ex-
pects a fixed input dimensionality. We include results from both
ATTMULTI-E2E [23] and MASK_NET (ATT) [24] models for
comparison.
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Table 1: 2D convolution filters of the CFE. First dimension is
[frequency and second dimension is time.

Stride
2x2, 2x1, 2x1

Channels Kernel

32,32,96  41x11, 21x11, 21x11

Layers
L1,L2,L3

3.3. Training parameters

All our models are optimized separately, but use the same
acoustic model architecture presented in Subsection 2.2: a CFE
with 3 layers of convolutional blocks (Table 1) followed by 5
layers of bidirectional LSTMs with 256 units in each direction.
The final output layer is an affine transform to the 59 output
classes. The MC-ATT model uses 10 LSTM units followed by
a single dense unit with a SELU non-linearity to implement the
attention scoring function Z (Equation 1), resulting in 7k ad-
ditional parameters. The models were trained in an end-to-end
fashion with the CTC objective [29] and the ADAM optimizer
[33] for 150 epochs. The model with the lowest character error
rate (CER) on the development set was used for evaluation.

3.4. Results

The CER obtained on the CHIME-4 development and evalua-
tion sets are reported in Table 2. All reported models do not
make use of external lexicons or language models.

3.4.1. Real noisy data

The MC—-ATT model achieves the lowest overall error rates on
both real noisy subsets ’et05_real’ and ’dt05_real’. MC-ATT
shows a relative CER improvement of 4.4% to 8.1% over
MC-AVG and 22.7% to 23.3% over NOISY. Seemingly,
MC-ATT benefits from the automatically learned channel
weighting. The BEAMFORMIT model shows error rates that are
similar to that of the MC-ATT model. The MVDR model shows
better results than the single channel NOISY model, but is not
competitive with the other approaches on real noisy data.

Results from related work report higher error rates.
Our MC-ATT model shows a relative CER improvement
of 153% to 15.9% over MASK.NET (ATT) and 40.3% to
429% over ATTMULTI-E2E. The higher error rates of
MASK.NET (ATT) and ATTMULTI-E2E may originate from
their hybrid CTC+Encoder/Decoder acoustic model unlike our
simple CTC model. The number of parameters of the MC-ATT
model (8.031M) also compares favorably against those of
ATTMULTI-E2E (~8M) and MASK.NET (ATT) (~18M).
Note that the latter implements the neural beamformer part with
an estimated ~10M parameters, while our sensory attention
mechanism uses only 7k parameters.

3.4.2. Simulated noisy data

The MVDR model clearly achieves the lowest CER on both sim-
ulated noisy subsets ’et05_simu’ and ’dt05_simu’ and yields
significantly lower error rates than it did on the real noisy
data. For MVDR beamforming, better performance on simu-
lated data was also reported by the CHiME-4 authors and ex-
plained with the absence of reverberation in the simulated data
[30]. The MASK_NET (ATT) model performs significantly bet-
ter than MC—ATT on ’dt05_simu’, but worse on ’et05_simu’. The
BEAMFORMIT model performed worse than the single channel
NOISY model on ’etO5_simu’. This result may be explained
by the separate optimization of the beamforming and acoustic



Table 2: CER [%] results on CHIME-4 ASR experiments. No
language models are used. The best results are printed in bold.
Related work did not give parameter counts, thus they were es-
timated to the best of our knowledge.

dt05 dt05 et05 et05
Model Parameters simu real simu real
NOISY 8.024M  20.1 19.8 253 29.6
MC-AVG 8.024M 182 16.0 24.8 24.7
MC-ATT 8.03IM 175 153 225 22.7
BEAMFORMIT 8.024M 177 153 262 235
MVDR 8.024M 13.0 18.6 174 28.6
ATTMULTI-E2E [23] ~8M 26.5 26.8 329 38.0
MASK_NET (ATT) [24] ~18M 153 18.2 23.7 26.8

model components. We further hypothesize that the simulated
noisy data itself could explain the unexpected findings: at times,
the simulation process introduces residual speech artifacts on
channels 1/3/4/6 but produces a cleaner channel 5 signal'.

3.4.3. New channel configurations

The flexibility and interpretability of the sensory attention
mechanism is demonstrated through additional experiments on
’dt05_real’. We test the CER of the MC-ATT and MC—AVG mod-
els for the cases of channel re-ordering, channel addition and
channel removal. The models are not re-trained for these new
channel configurations. The CER results are reported in Table 3
along with the average attention weight (&° = + Zle of )
of every channel c of MC-ATT, computed over all 7' = 989608
frames of ’dt05_real’. Note that the way we report the atten-
tion weights, corresponds to the CHiME-4 channels, and does
not reflect the channel order. The MC-AVG model assigns equal
attention weights to all N channels, i.e. af = %

As expected, both models are invariant to channel re-
ordering and yield identical CER for channel orders 6/5/4/3/1
and 1/3/4/5/6. Adding the noisy channel 2 (1/2/3/4/5/6) leads
to a smaller increase in CER for MC-ATT. In fact, MC-ATT
suppresses channel 2 as seen by the lower attention weight o7
of this channel when compared to the other channels. This in-
dicates a good generalization of the sensory attention mecha-
nism because it was not trained on the data from channel 2. For
all channel configurations, channel 2 has the lowest attention
weight and channel 5 has the highest attention weight whenever
either one is present. When removing channels, MC-ATT has
an increased advantage and shows a relative CER improvement
of up to 12.7% over MC—-AVG in the channel configuration 2/5.
For this configuration, the results show that the attention mech-
anism is quite accurate: a? > o holds true for 97.7% of all
frames. In other words: by comparing attention weights alone,
we can identify the higher SNR channel 5 with 97.7% accuracy.
The high interpretability of the attention weights is further con-
firmed by the plots of the input features and attention weights
for the channel configuration 2/5 in Figure 2.

4. Conclusion

In this work we presented an end-to-end model that embeds
a sensory attention mechanism for noise-robust multi-channel
ASR. The attention mechanism uses no prior assumptions on
microphone configurations, and therefore enables our end-to-

le.g. sample "M06_447C0216_STR’ from ’et05_simu’
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Table 3: CER [%] results on the 'dt05_real’ subset of CHIME-
4 for new channel configurations. The attention weights for
MC-ATT are an average over all frames of this subset. Low-
est CER and highest attention weight are printed in bold.

CER [%] MC-ATT attention weights

Channels |[MC-AVG MC-ATT| &' &% a&°® a* a&a° a
1/3/4/5/6 16.0 153 (0.19 - 0.18 0.22 0.23 0.18
6/5/4/3/1 16.0 153 (0.19 - 0.18 0.22 0.23 0.18
172/3/4/516 | 17.1 16.1 |0.16 0.12 0.16 0.19 0.21 0.16

2/3/4/5 18.3 16.9 - 0.18 0.23 0.29 030 -

2/3/5 19.8 18.0 - 025032 - 043 -

2/51 228 19.9 - 037 - - 0.63 -

2| 464 45.8 - 100 - - - -

5 18.3 17.9 - - - - 100 -

CH2 2
CH5 0
Merged -2

. (b) attention weights 10

VAT | AERS Snemane m Ve oy '
a?a? 0.5
e PAA_ A WA APy
0 100 200 300 400 500 600 00
Frames t

Figure 2: Operation of MC-ATT on a sample with channel con-
figuration 2/5. (a) Spectrogram features for the two input chan-
nels and the merged representation. (b) Attention weights for
the two input channels. The merged representation is dominated
by channel 5, as evident by the higher attention weight values
of this channel which has less noise.

end model to deal with arbitrary channel ordering without re-
training. The attention weights are dynamically decreased on
channels with more noise, and the model is able to deal with the
addition or removal of input channels. These are useful proper-
ties for real-world systems, as the attention weights could help
to identify failing sensors that need replacement or suboptimal
sensors which can then be removed to save computation and
hardware resources.

The attention mechanism is implemented by a simple net-
work consisting of generic LSTM and dense units. Even though
the total parameter count of our end-to-end model increases by
only 0.09% from the addition of this mechanism, it allows the
model to achieve performance that, on real noisy data, is on
par or better than using separate beamforming pre-processing
stages. Compared to a related model which also uses a sensory
attention mechanism, our end-to-end model showed a relative
CER improvement of 40.3% to 42.9% on the real-world noisy
recordings of the CHiME-4 data-set.
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