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Abstract 

One of the biggest challenges of acoustic scene classification 

(ASC) is to find proper features to better represent and charac-

terize environmental sounds. Environmental sounds generally 

involve more sound sources while exhibiting less structure in 

temporal spectral representations. However, the background of 

an acoustic scene exhibits temporal homogeneity in acoustic 

properties, suggesting it could be characterized by distribution 

statistics rather than temporal details. In this work, we investi-

gated using auditory summary statistics as the feature for ASC 

tasks. The inspiration comes from a recent neuroscience study, 

which shows the human auditory system tends to perceive 

sound textures through time-averaged statistics. Based on these 

statistics, we further proposed to use linear discriminant analy-

sis to eliminate redundancies among these statistics while keep-

ing the discriminative information, providing an extreme com-

pact representation for acoustic scenes. Experimental results 

show the outstanding performance of the proposed feature over 

the conventional handcrafted features. 

Index Terms: acoustic scene classification, auditory summary 

statistics, linear discriminant analysis 

1. Introduction 

Acoustic scene classification (ASC), usually defined as the task 

of identifying the acoustic environment from the sounds they 

produce, has drawn attention of machine listening community 

recently [1]. It is one of the critical techniques that would enable 

machines/devices the ability of environment-awareness and 

there has been some real-life applications, such as context-

aware services [2] and robotic navigation [3]. 

One of the biggest challenges of ASC is to find proper fea-

tures to better represent and characterize environmental sounds. 

Early works have heavily borrowed features from speech and 

music processing fields. For instance, features used to dominate 

speech processing community, such as Mel frequency cepstral 

coefficients (MFCC) [4], Linear predictive coefficients (LPC) 

[5] and some low-level temporal or spectral features were 

widely used by ASC systems. Another example is the Const-Q 

Transform (CQT) [6]. It was initially designed for describing 

harmonic sounds like music tones, but now has been widely 

used as the feature for ASC tasks. 

However, the acoustic properties of daily-life environments 

are quite different from those of speech and music signals. On 

one hand, environmental sounds exhibit less structure in the 

temporal-spectral representation. On the other hand, sounds in-

volved in daily-life environments are more diverse and different 

ways of imposition of these sounds could make this problem 

harder. Thus, more task-adapted features should be designed for 

ASC tasks. Towards this goal, Rakotomamonjy et al. [7] pro-

posed to use histogram of oriented gradients (HOG) to encode 

the local direction of variation on top of CQT. Bisot et al. [8] 

proposed to use the Subband Power Distribution (SPD) as a fea-

ture for capturing occurrences of sound events inside a scene. 

Beyond these feature engineering methods, some works inves-

tigated supervised or unsupervised feature learning-based 

methods. For instance, a recent work by Bisot et al. [9] investi-

gated various matrix factorization techniques to learn features 

from CQT spectrogram. Hyder et al. [10] proposed a CNN-

SuperVector system to combine the feature learning strength of 

CNN with the super-vector backend. 

The strategy shared by the methods mentioned above is that 

they tried to model acoustic scenes as a whole based on tem-

poral-spectral representations, either by handcrafted feature en-

gineering or by feature learning. Another strategy is to treat the 

background and foreground of the acoustic scene separately 

while focusing on background modeling. For instance, the min-

imum statistics were extracted to model background in a scene 

[11] and Local Binary Patterns (LBP) with an enhanced zoning 

mechanism was used as a background sound texture descriptor 

[12]. In this work, we followed the second strategy based on the 

following observation: the background sounds are usually pro-

duced by a collection of co-occurrence sound events, producing 

a texture-like sound, which could be characterized by its tem-

poral homogeneity.  

Our work is greatly inspired by two recent works on neuro-

science study of sound texture perception. The evidence from  

[13] suggests humans perceive texture sounds by summarizing 

the temporal details of sounds using time-averaged statistics. 

An earlier work [14] by the same group found that sound tex-

tures synthesized with the same statistics sound similar. These 

findings suggest these statistics underlie the distinctions among 

various sound textures, thus could be used for recognizing the 

background of acoustic scenes. Relevant to our work is [15], in 

which similar texture statistics were used as features for a 

coarse-grained, general-purpose audio track classification task, 

which achieved very similar accuracies to MFCC features. 

However, we believe these statistical features are more suitable 

for characterizing fine-grained sound textures, such as acoustic 

scene backgrounds. Experimental results support our view, with 

mean accuracy outperforming MFCC by a large margin on ASC 

datasets. Besides, we proposed to use LDA to extract an ex-

treme compact feature with great discrimination for acoustic 

scene classification. 

In this work, we investigated modeling the backgrounds of 

the acoustic scene using the auditory summary statistics. These 

statistics were measured upon three intermediated signals from 

an auditory filtering and processing module, which simulates 

the responses of the human auditory systems. Then a compact  
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Figure 1: Block diagram for feature extraction. 

 

and discriminative feature was extracted using LDA. For exper-

iments, we analyzed how audio segment length impact the ef-

fectiveness of the feature. And we visualized the feature ex-

tracted to show its discrimination. At last, the feature was com-

bined with a support vector machine (SVM) classifier and 

tested on LITIS Rouen [7] dataset and DCASE2016 dataset [16]. 

2. Feature Extraction 

The feature extraction process is shown in Figure 1. First, an 

input audio was filtered and processed to generate intermediate 

signals simulating responses of the human auditory system. Ba-

sically we follow the  process flow of the auditory model in   

[14]. The intermediate signals include subband signals, subband 

envelopes and modulated signals, which were shown inside the 

dashed blocks. Then statistical moments such as mean, variance, 

skew and correlations were measured on these signals. Finally, 

these summary statistics were concatenated into a large vector 

and passed into a LDA module to reduce dimension. We need 

to point out that these statistical features were extracted from 

audio segments rather than the full-length audio. The main con-

cerns and related experiments were presented in the next section. 

2.1. Auditory filtering and processing 

As shown in the upper part of Figure 1, an input audio was first 

passed to a 32-channel cochlear filter bank, which spans 20-

10000 Hz in a log frequency scale. Thus, an input sound pres-

sure wave was decomposed into 32 subband signals, simulating 

the frequency selectivity of cochlea.  

Then the envelope of each subband was computed by first 

applying Hilbert transformation to the subband signal and mag-

nitude of the analytic signal was token. Next, subband enve-

lopes were raised to a power of 0.3 to simulate basilar mem-

brane compression. The output of this step were 32 subband en-

velopes. The envelope signals were further down-sampled into 

400 Hz for reducing computational complexity. 

To replicate the modulation tuning effect in midbrain and 

thalamic neurons [17], a bank of 20 filters spanning 0.5–200 Hz 

was applied to each subband envelope, generating 20 modu-

lated signals for each subband envelope. Therefore, there were

32 20  modulated signals in total. 

2.2. Statistics measurement 

After auditory filtering and processing, we measured the statis-

tical moments and pairwise correlations of the intermediate sig-

nals. The rationale under statistical moments is the following: 

acoustic backgrounds could be characterized by its temporal 

homogeneity, thus could be described as distribution rather than 

temporal details. Hence, statistical moments (e.g. mean, vari-

ance, skew) were calculated to reflect the difference among 

these distributions. The correlation statistics, in contrast, each 

reflects distinct aspects of correlations between envelopes of 

different channels, or between their modulation bands. For ex-

ample, some sounds are broadband (multichannel responses 

from cochlear responses are high) while some other are inde-

pendent across channels. These dependencies or correlations 

were reflected in correlation statistics. 

However, experimental results in [14] showed that not all 

the statistics were perceptually important and also there were 

information redundancies among these statistics. We believe 

perceptually important statistics would help classification. Thus, 

in practice, we use a subset of statistics that has proven to be 

perceptually important in [14]. Hence, for marginal momnets, 

we selected subband variance, envelope mean/variance/skew, 

modulation power for each frequency channel and modulation 

channel. For envelope correlations, we selected the six diagonal 

statistics from the full 32 32  envelope correlation matrix with 

diagonal index belonging to {2,3,4,6,9,12,17,22}， resulting in 

189 envelope correlation features. For modulation correlations, 

correlations were computed between two  bands centered on the 

same modulation frequency but different acoustic frequencies 

(referred as C1 in [14]). We only calculated correlations be-

tween two nearest frequency bands and the modulation band 

with index{2,3,4,5,6,7},  resulting in 366 modulation correla-

tion features. These statistics were sufficient to reproduce the 

qualitative form of the full correlation matrix through correla-

tion propagation and has proven to be perceptually sufficient 

[14]. Finally, these auditory summary statistics (ASS) were 

concatenated into a large vector (with a dimension of 1322), 

named ASS-vector.  
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2.3. Linear discriminant analysis 

The ASS-vectors are unsuitable to be directly used as the fea-

ture in classification tasks due to its high dimensional. Hence, a 

feature reduction is needed. For the ASC task, the audio sam-

ples of the same acoustic scene may be recorded each in differ-

ent locations. For example, recordings from different restau-

rants share the same label as ‘restaurant’. Thus during feature 

reduction, we need to eliminate the variances coming from lo-

cations while keeping the variances that help distinguishing 

scenes. Hence, linear discriminant analysis was performed to 

transform the ASS-vectors into a low dimensional feature space 

where the between-scene covariance is maximized while 

within–scene covariance is minimized. More formally, the pro-

cedure is as follows: First, the between-scene and within-scene 

scatter matrices
bS and

wS were computed as: 

1

( )( )
C

T

b c c c

c

N


  S μ μ μ μ    (1) 

, ,

1 1

( )( )
cNC

T

w c j c c j c

c j 

  S w μ w μ    (2) 

where, the number of scenes (classes) is C，the total number of 

ASS-vector is N and
cN is the number of ASS-vectors belong-

ing to the 
thc scene. ,c jw is the thj ASS-vector from the

thc scene. 

cμ is the mean of ASS-vectors belonging to scene .c  μ is the 

global mean of all the N  ASS-vectors in the development set.  

Then our objective is to find a projection matrix A so that 

in the projected space the following criteria is maximized: 

1 1( ) {( ) ( )}T T

w b w bTr Tr  J S S A S A A S A   (3) 

Where bS is the between-scene scatter matrix and wS is the 

within-scene scatter matrix in the projected space. The values 

of A that optimize criteria J is given by eigenvectors corre-

sponding to the largest eigenvalues of 1

w b

S S  [18]. After getting 

transformation matrix ,A for any ASS-vector w， we could get 

a low dimensional feature v  as 

  
Tv A w       (4) 

We name this feature v as ASS-LDA feature. In practice, the 

projection matrix A was trained on training data and retained 

for testing. Based on preliminary experiments, the dimension of 

ASS-LDA feature for LITIS Rouen dataset was set to 18 while 

for DCASE2016 dataset, the dimension of ASS-LDA feature 

was set to 14. 

3. Experimental Evaluation 

3.1. Datasets 

The experiments were carried out on two ASC datasets: the 

LITIS Rouen dataset [7] and DCASE2016 dataset [16]. LITIS 

Rouen dataset is the largest ASC dataset and since the data is 

unbalanced, the mean Average Precision (mAP) [7] over the 20 

folds training-testing splits were reported, as suggested by the 

creators of the LITIS Rouen dataset. However, for comparison 

with other methods, the accuracy was also reported, which de-

fined as the number of correctly classified samples divided by 

the total number of samples. DCASE2016 dataset consists of 

two subsets: development set (1170 files) and evaluation set 

(390 files). For this dataset, the mean accuracy over 4-fold cross 

validation of the development set and accuracy of the challenge 

evaluation dataset were reported. And the data from both chan-

nels were utilized in both training and testing phase for 

DCASE2016 dataset. 

3.2. Segmentation and classification 

3.2.1. Slicing and feature extraction 

An input audio was first sliced into segments before the ASS-

LDA feature were extracted for each segment. The main reason 

why we did not extract features for the whole audio recording 

is based on the following two considerations: First, the effec-

tiveness of the statistical features is based on the temporal ho-

mogeneity of scene background, which may not hold true for a 

full-length (30s) audio example of ASC datasets. However, an 

audio segment of moderate length could be thought as temporal 

homogeneous and thus could be modeled as a whole. Second, 

some rare short-term sound event may influence the statistics of 

a scene. For example, a high-tune female laugh on a train may 

have a great impact on the high-frequency statistics of the scene. 

But it is rather a rare event for a typical scene on a train. Thus 

by segmentation we could limit the influence of such rare 

events within one or few segments, without polluting the whole 

audio file.  

3.2.2. The SVM Classifier 

The ASS-LDA feature vectors for each segment was scaled to 

[-1,1] before passing to a RBF Kernel, one-versus-one SVM 

classifier [19]. Both the training and testing phases of the SVM 

were all segment-based, but the final decision for each testing 

file was based on a majority vote mechanism. 

To set parameters, for each dataset, we performed a coarse 

grid search by further split training set of the first fold into 

80%~20% train/validation splits. Parameters giving the highest 

cross validation accuracy on first fold training set were retained. 

The final parameters for each dataset is listed in Table 1. 

Table 1: parameters for the SVM classifier.  

Datasets C Gamma 

LITIS Rouen 4 2 

DCASE 2016 2 4 

3.3. Experimental results 

3.3.1. The influence of segment length 

The first experiment explored how segment length impact sys-

tem performance on LITIS Rouen dataset. We sliced each full-

length (30 seconds) audio file into segments of seg_len seconds, 

with hop_size set to half of the segment length, resulting in 

seg_num segments. The final decision for a full-length audio 

was based on majority-vote over seg_num segments. And the 

mean average precision over 20-folds cross validation setups 

were reported as the evaluation metric. 

As illustrated in Table 2, the difference of mAP among 

2s~6s were not significant and the last configuration with seg-

ment length set to 2 seconds yielded the best mAP. As expected, 

segment length set to 30 seconds failed to extract effective fea-

tures as the temporal homogeneity premise may be broken for 

too long audios and the features may be polluted by some rare 

sound events. Thus in later experiments, segment length was set 

to 2 seconds for both datasets. 
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Table 2: performance based on various segment 

lengths on LITIS Rouen dataset.  

seg_len hop_size seg_num mAP 

30s -- 1 20.2% 

10 s 5 s 5 92.6% 

6 s 3 s 9 94.1% 

5s 2.5s 11 94.7% 

3 s 1.5 s 19 94.9% 

2s 1s 29 95.4% 

3.3.2. Visualizing ASS-vectors and ASS-LDA feature 

For the second experiment, we visualized how the feature ob-

tained carry discriminative information. The experiment was 

performed on the training data of the first fold of DCASE 2016. 

Both ASS-LDA feature and the ASS-vector were projected to 

2D-dimensional space using Barnes-Hut tSNE [20]. As shown 

in Figure 2, The ASS-LDA were better clustered suggesting  

during LDA discriminative information were kept. 

 
Figure 2: Feature visualization of ASS-LDA (left) and 

ASS-vectors (right) using tSNE 

3.3.3. Results on LITIS Rouen 

Table 3 summarizes some of the best-performing results on 

LITIS Rouen based on various features. For easy comparison, 

we split them into two categories: the handcrafted feature-based 

methods and the feature learning-based methods. As shown, alt-

hough our performance was outperformed by the feature learn-

ing-based methods, we achieved significant improvements over 

the feature-based method without feature fusion and we got 

comparable results to the best-performing handcrafted feature-

based method. Moreover, we provided an extreme compact fea-

ture (with a dimension of 18) comparing to other methods. This 

feature could be easily combined with other complementary 

features to improve system performance in the future. 

Table 3:  Comparison with state-of-the-art methods on 

LITIS Rouen dataset. 

Features dimension mAP Accuracy 

Handcrafted feature-based method: 

HOG [7] 1536 92.0% -- 

LBP8,1 [12] 880 91.5% 91.5% 

HOG+SPD [8] >1000 93.3% 93.4% 

LBP+HOG [12] >3000 95.1% 95.1% 

ASS-LDA (ours)* 18 95.4% 95.0% 

Feature learning-based method: 

CQT+TDL [9] 512 -- 96.4% 

DNN+LR [9] 100 -- 97.1% 

3.3.4. Results on DCASE 2016  

Since this dataset was initially released as a challenge task, 

many challengers tend to take a multi-model fusion strategy to 

push the final score higher. However, for a fair comparison, we 

limited our comparison among systems without utilizing multi-

model fusion. For multi-model systems, the performance of the 

single best model was reported.  Under this condition, our 

method achieved the state-of-the-art results on both 4-fold cross 

validation sets and the challenge evaluation set. 

Table 4 summarizes some of the best-performing models on 

DCASE2016 dataset. All results reported here were directly ex-

tracted from the referenced papers. We included baseline model 

(MFCC + GMM [16]) from the initial challenge as our baseline. 

First, we included the ranked-first method of the challenge, 

which was an i-vector model based on boosted Multi-channel 

MFCC features [21]. Then ranked second method of the chal-

lenge was also included, which was a task-driven dictionary 

learning (TDL) model based on a CQT spectrogram. The best-

performing updated version of it was reported [9]. Then a model 

inspired by speaker recognition was reported, in which CNN 

was used as a feature learner to extract feature from a SIF spec-

trogram [10]. At last, we include a recent work [22] investigat-

ing various deep neural network models on various features. 

The best-performing model of it [22] was a DNN model trained 

on a collection of features named Smile6k, which includes 

MFCC, Fourier transforms, zero crossing rate, energy, and 

pitch etc. as well as first and second order features. 

As shown, our model significantly improved the baseline 

reaching an 89.5% accuracy on evaluation set. And we got su-

perior results over various state-of-the-art models based on a 

variety of features, demonstrating the advantages of using ASS-

LDA as representation for acoustic scenes classification.  

Table 4: Accuracy comparison with state-of-the-art 

methods on DCASE2016 dataset.  

Feature Classifier 4CV Eval 

MFCC [16] GMM baseline 77.2% 72.5% 

MiMFCC [21] i-vectors (CMB) 83.9% 88.7% 

CQT + TDL [9] LR 83.8% -- 

SIF-CNN-SV [10] PLDA 81.8% 87.2% 

Smile6k [22] DNN 84.2% 84.1% 

ASS-LDA (ours)* SVM 84.6% 89.5% 

4. Conclusion 

In this paper, we proposed an LDA-based method to extract a 

discriminative feature from auditory summary statistics for 

characterizing the background of acoustic scenes. The auditory 

summary statistics provide a statistical representation of acous-

tic scenes by disregarding the temporal details of the signal. 

Based on these statistics, we extracted a feature that was ex-

tremely compact comparing to conventional features. With this 

compact feature, we achieved superior results than the best-per-

forming handcrafted feature methods without fusion on LITIS 

Rouen dataset and the state-of-the-art performance on 

DCASE2016 dataset. 
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