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Abstract
This paper deals with the problem of detecting replay attacks
on speaker verification systems. In literature, apart from the
acoustic features, source features have also been successfully
used for this task. In existing source features, only the informa-
tion around glottal closure instants (GCIs) have been utilized.
We hypothesize that the feature derived by capturing the tem-
poral dynamics between two GCIs would be more discrimina-
tive for such task. Motivated by that, in this work we explore
the use of discrete cosine transform compressed integrated lin-
ear prediction residual (ILPR) features for discriminating be-
tween genuine and replayed signals. A spoof detection system
is built using the compressed ILPR feature and a Gaussian mix-
ture model (GMM) classifier. A baseline system is also built
using constant-Q cepstral coefficient feature with GMM back-
end. These systems are tested on the ASVSpoof 2017 Version
2.0 database. On fusing the systems developed using acoustic
and proposed source features an equal error rate of 9.41% is
achieved on the evaluation set.

Index Terms: spoof detection, replay attacks, playback attacks,
CILPR, CQCC.

1. Introduction
Automatic speaker verification is defined as the task of accept-
ing or rejecting the identity claim of a speaker [1, 2, 3]. In
recent years, the adoption of speaker verification technologies
for commercial applications has seen a sharp increase. As these
speaker verification systems are vulnerable to different kinds of
spoofing attacks, research in the area of detecting and prevent-
ing spoofing attacks has steadily gained momentum. Spoofing
attacks are classified into four different types: replay, voice con-
version, text-to-speech (TTS) and impersonation [4]. This work
deals exclusively with replay attacks.

The earliest work on studying the vulnerabilities of a
speaker verification system to replay attacks was done in [5].
It performs the replay attacks by concatenating isolated digits
from recordings of a genuine user and playing it back to the SV
system and it showed a marked increase in both equal error rates
(EER) and false acceptance rates (FAR) in the presence of re-
play attacks. Similar trends were reported in [6] which showed
that EER of a joint factor analysis (JFA) based SV system was
0.71% when only non-spoofing impostor trials were used but
when this EER operating point was selected as the decision
threshold, 68% of the replayed trials were falsely accepted by
the system. Recently, constant-Q cepstral coefficients (CQCC)
features have been successfully used as a countermeasure for
replay attacks [7]. The ASVSpoof 2017 challenge helped to
increase awareness and the need for research in the area of re-
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Figure 1: ILPR signals for segments of genuine and spoofed
speech signals. (a)-(b) and (c)-(d) represent the speech signal
and its corresponding ILPR signal for genuine and spoofed sig-
nals, respectively.

play attack detection [8]. In [9], replay attacks were tackled
with the help of high frequency cepstral coefficients features at
the signal level and a deep neural network (DNN) based feature
extractor at the modeling level which is trained to distinguish
between different playback, recording and environmental con-
ditions. An ensemble learning technique is proposed in [10].
It uses a combination of acoustic features and different GMM
based classifiers. The authors of [11] have explored the effi-
cacy of standalone convolutional neural networks (CNN) and a
combination of CNN and recurrent neural networks (RNN).

In our previous work, two source features namely epoch
feature (EF) and mean and skewness of peak to side lobe ratio
of the Hilbert envelope of linear prediction residual (PSRMS)
were explored that characterize the excitation source behavior
around the glottal closure instants (GCIs) [12]. However, they
do not capture the dynamic characteristics of the source sig-
nal between two GCIs. This information can be extracted with
the help of the integrated linear prediction residual (ILPR) sig-
nal which models the temporal shape of voice source signal be-
tween two GCIs. Figure 1 shows four glottal cycles of a speech
signal and the corresponding ILPR for original and spoofed sig-
nal. It can be clearly seen from the figure that the dynamics of
the ILPR signal between two GCIs is totally distorted as that
of original. It is expected that characterizing the source tempo-
ral dynamics between two GCIs may give improvement in the
spoof detection system.

In this present work, the task of discriminating between
genuine and replayed speech signals is performed by utilizing
the temporal dynamics of a signal between two GCIs. Since
this dynamics is captured by ILPR, its use as a feature for spoof
detection is proposed. However, the ILPR between two GCIs
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does not yield fixed dimensional vectors as the number of sam-
ples between two GCIs is not constant. In order to solve this
problem, the discrete cosine transform (DCT) is applied on the
ILPR in a pitch synchronous fashion. On account of the energy
compaction achieved with DCT, a fixed dimension representa-
tion can be obtained. So derived compressed excitation source
features are called as CILPR feature in this work.

It has also been established that combining source features
with system level features helps in enhancing the performance
of a replay attack detection system. CQCCs have proven to be
a robust spoof detection feature. Thus, in this work a combi-
nation of CILPR with CQCC is proposed as a countermeasure
for replay attack detection. Initially, a spoof detection system
is developed using CILPR feature and Gaussian mixture model
(GMM) classifier. Two GMMs are trained with these features:
one for genuine class and one for spoof class. A CQCC based
front-end and GMM based back-end baseline system is also de-
veloped. The efficacy of these systems is tested on the devel-
opment set of the ASVSpoof 2017 Version 2.0 database. Since
the two systems are built with features having complementary
information, it is expected that their fusion will result in im-
proved performance. The two systems are hence fused at the
score level with the help of Bosaris toolkit [13]. The same sys-
tems are then built on the evaluation set of the database. Two
different sets of experiments are performed for the evaluation
set. The first set of experiments are conducted using only the
train set of the database to learn the GMMs. In the second set,
data from both train and development sets are taken to build the
GMMs. The main contribution of this work is the use of ILPR
to characterize the voice source of genuine and replay signals
and the proposal to apply CILPR for replay attack detection.

The remainder of the paper is organized in the following
way: Section 2 explains the method of extraction of CILPR fea-
ture in detail. In Section 3, the process of development of pro-
posed spoof detection system using CILPR is described. Sec-
tion 4 details the baseline system built using CQCC. Experi-
mental results and discussions are provided in Section 5. Fi-
nally, the conclusions are presented in Section 6.

2. CILPR for excitation source
characterization

CILPR is computed from the ILPR based voice source repre-
sentation and captures the temporal shape of voice source sig-
nal between two GCIs. This feature has also been explored for
speaker identification in [14]. ILPR is estimated by passing a
non pre-emphasized version of speech signal through an LP in-
verse filter, the LP coefficients of the inverse filters are obtained
from the corresponding pre-emphasized speech signal. The LP
order is considered to be fs/1000 + 4, where, fs is sampling
frequency. CILPR feature is computed pitch synchronously and
requires GCIs to mark the pitch period. Let, ri(n) be a pitch
synchronous segment of ILPR signal between ith and (i+1)th

GCIs. Then, DCT-II of ri(n) segment is computed by project-
ing it in to the discrete-cosine basis, as given below,

c(k) =
N−1∑

n=0

ri(n)cos

[
π

N

(
n+

1

2

)
k

]
, (1)

where, c(k), k = 0, 1, 2, ....N − 1 are the DCT coefficients,
N is the number of DCT coefficients. Further, the lower order
DCT coefficients are considered and resultant feature vector is
referred to as CILPR. It provides a compact representation of
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Figure 2: (a)-(b) and (c)-(d) represent the ILPR signals and
their corresponding non-truncated CILPR features for two dif-
ferent genuine speech signals, respectively.

Table 2: Details of the ASVSpoof 2017 Version 2.0 database

Database Number of Number of utterances
Subset Speakers Genuine Replayed
Train 10 1,507 1,507

Development 8 760 950
Evaluation 24 1,298 12,008

the ILPR signal between two GCIs and captures the dynamic
characteristics between them.

To illustrate the compaction property of DCT and to show
that the lower order DCT coefficients encapsulate the infor-
mation contained in the ILPR, the ILPR of two pitch periods
and the corresponding non-truncated CILPR for two different
speech segments are depicted in Fig 2. From the figure it can be
clearly noticed that the CILPR is a compressed version of the
ILPR and that most of the information is contained in the first
few coefficients.

3. CILPR based spoof detection system
In this section the process of development of the proposed spoof
detection system using CILPR is explained. First a descrip-
tion of the ASVSpoof 2017 Version 2.0 database is presented.
Next the experimental setup of this spoof detection system is
described explaining the details of the CILPR based system.

3.1. Database

The experiments in this work are conducted on the ASVSpoof
2017 Version 2.0 database [15]. The original ASVSpoof 2017
database contained some anomalies which were removed in ver-
sion 2.0. The database consists of genuine and replayed speech
signals and is designed specifically for replay attack detection.
The genuine signals are taken from the RedDots corpus and the
replay attacks are made using different configurations [16, 17].
There are three subsets in this database: train, development and
evaluation. The sampling rate of the signals is 16 kHz and the
resolution is 16 bits per sample. The details of the database are
provided in Table 2.

3.2. Development of spoof detection system using CILPR

CILPR feature is calculated from the ILPR in temporal domain
in pitch synchronous manner [18]. Since 16 kHz sampling fre-
quency is considered in this work, 20 order of LP filter is used.
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Table 1: Tuning of the dimensionality of the proposed CILPR features on development set of ASVSpoof 2017 Version 2.0 database

CILPR dimensionality 4 8 12 16 20 24 28 32 36
EER (%) 31.06 25.55 21.52 20.34 20.0 19.68 20.11 19.95 20.06

As only voiced regions are considered to compute the CILPR, a
glottal activity detection algorithm is needed. Zero-frequency
filtering (ZFF) based method is applied to detect the glottal
activity and to estimate the GCI locations in the speech sig-
nal [19, 20]. In this case, initially, differenced version of speech
signal is passed through a zero frequency resonator (ZFR) and
the output of the ZFR is exponentially growing or decaying in
nature depending on the signal polarity. The trend of the expo-
nential signal is removed by a moving average filter with size
of approximately two pitch periods and the resultant signal is
termed as zero frequency filtered (ZFF) signal. The positive to
negative zero crossings are considered as the estimated GCIs
of the signal. At every GCI, the positive to negative slope is
termed as strength of excitation (SoE). The SoE is used to de-
tect the glottal activity regions of the genuine and spoofed sig-
nals. The detected glottal activity regions are further used to
extract the CILPR features pitch synchronously. At each GCI,
ILPR segment from current GCI to next GCI is considered and
normalized by the norm of the segment before applying DCT-II
computation. The DCT-II of pitch synchronous ILPR segment
is computed for both the genuine and spoofed signals and first
few coefficients are considered, excluding the first coefficient.
The low order DCT coefficients are termed as CILPR in this
work. Initially, an experiment is performed to obtain the opti-
mum number of DCT coefficients to develop the spoof detection
system. The lower order DCT coefficients are varied from 4 to
36 with an increment of 4 to perform the experiment. GMM
based models of 512 mixtures are built from the train subset of
the database using each extracted CILPR features. The testing
is done on the development data and the results are shown in the
Table 1. From the table it can be observed that the best perfor-
mance in terms of EER is obtained with 24 dimensional CILPR.
After tuning the parameters of the CILPR on the development
set, the system is tested on the evaluation set.

4. Constant-Q cepstral coefficients based
baseline spoof detection system

CQCCs have recently become very popular as a countermeasure
against replay attacks. This section describes the method of ex-
tracting CQCCs from a speech signal. The experimental setup
of the baseline spoof detection system developed using CQCC
is then discussed.

4.1. Method of extracting CQCC

CQCCs are calculated from the constant-Q transform (CQT)
instead of the conventional Fourier transform [21]. In the calcu-
lation of Fourier transform, regularly spaced frequency bins are
used which leads to poor frequency resolution at lower frequen-
cies and poor temporal resolution at higher frequencies. CQT,
on the other hand, applies geometrically spaced frequency bins
which ensures higher frequency resolution at lower frequencies
and higher temporal resolution at higher frequencies. This kind
of frequency spacing resembles the human perception system
more closely [7].

The CQT XCQ(k, n) of a discrete signal x(n) is calculated
in the following way [21]:

XCQ(k, n) =

n+⌊Nk/2⌋∑

j=n−⌊Nk/2⌋
x(j)a∗

k(j − n+Nk/2) (2)

where, k = 1, 2, ..., K is the index of the frequency bin, a∗
k

denotes the complex conjugate of ak and Nk represents variable
window lengths.

The CQT is then converted to a linear space and conven-
tional cepstral analysis is performed to extract CQCC features.

CQCC(p) =

L∑

l=1

log |XCQ(l)|2 cos
[
p(l− 1

2
)π

L

]
(3)

where p = 0, 1, 2, ..., L − 1 and l are newly resampled fre-
quency bins [21].

4.2. Experimental setup

The baseline spoof detection system in this work is developed
using CQCC features. They are calculated as described in Sec-
tion 4. The system uses 19 static CQCC coefficients plus the
log-energy coefficient to which delta (∆) and delta-delta (∆∆)
features are appended making it a 60 dimensional feature vec-
tor. Cepstral mean variance normalization (CMVN) is applied
upon these features. From these features, two GMMs of 512
mixtures each are learned for the genuine and spoof classes.

5. Experimental Results and Discussion
The performances of the systems developed on the ASVSpoof
2017 Version 2.0 database using the proposed CILPR fea-
tures and the baseline CQCC features are presented in Table 3
in terms of EER and minimum detection cost function (min.
DCF). For the experiments on the development set, the train
set is used to learn the GMMs of the two classes. The exper-
iments on the evaluation set are conducted with two different
training configurations. The first configuration uses only the
train set to learn the GMMs while for the second configura-
tion, data from the train and development sets are pooled to
train the GMMs. These two configurations are called C1 and
C2, respectively. From Table 3, it can be seen that the baseline
system gives an EER of 9.19% for the development set. EERs
for C1 and C2 configurations of the evaluation set are 13.84%
and 12.58%, respectively. The proposed system results in an
EER of 19.68% for the development set. Its EER for C1 con-
figuration is 20.66% and 15.76% for C2. The baseline and the
proposed system are then fused at score level. The fused system
results in the best EER of 9.41% and minimum DCF of 0.474
for the C2 configuration of evaluation set. For the development
set, the fused system produces an EER of 5.89% and minimum
DCF of 0.338. This proves that combining source and acous-
tic features for replay attack detection can lead to significant
performance enhancement. The detection error trade-off (DET)
curves for the different spoof detection systems are given in Fig-
ure 3 which show similar performance trends.
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Figure 3: DET curves for the spoof detection systems developed using different kinds of features and their fusion. These curves are
plotted for development set and configuration C2 of evaluation set

Table 3: Performance comparison (in terms of %EER and minimum DCF) of different spoof detection systems and their fusion

System
Development Set Evaluation Set

Train Train ( C1 ) Train + Development ( C2 )
EER Min. DCF EER Min. DCF EER Min. DCF

Baseline: CQCC 9.19 0.455 13.84 0.739 12.58 0.662
Proposed: CILPR 19.68 0.799 20.66 0.947 15.76 0.847
Contrast: PSRMS 33.38 0.952 28.16 0.996 27.81 0.991

Fusion: CQCC + CILPR 5.89 0.338 9.77 0.552 9.41 0.474

For contrast purpose, a system is developed using PSRMS
source feature proposed in our earlier work [12]. For calculat-
ing the PSRMS, first the linear prediction (LP) residual is esti-
mated from the speech signal. From the LP residual a smoothed
Hilbert envelope (HE) is obtained. The peaks in the HE corre-
spond to the GCI locations. The side lobes around each peak is
considered to measure the peak to side-lobe ratios. The mean
and the skewness of these ratios form a 2-dimensional PSRMS
features. GMM of 16 components is learned from these fea-
tures. From Table 3, it can be noted that the PSRMS based
contrast system produces an EER of 33.38% for the develop-
ment set which is about double that for the CILPR system. The
contrast system results in an EER of 28.16% and 27.81% on
the evaluation set for configurations C1 and C2, respectively.

Another experiment is conducted to support our hypothe-
sis that the information extracted between two GCIs is more
useful than that obtained around a GCI for replay attack detec-
tion. In this experiment, all the genuine and spoofed signals
in the development set are considered. To find the separation
between the two classes in the case of CILPR and PSRMS fea-
tures, the Bhattacharya distances have been computed and are
shown in Figure 4. It is observed that the Bhattacharya distance
for CILPR is significantly greater than that of PSRMS which
confirms our hypothesis.

6. Conclusion
This work explores the recently proposed ILPR voice source
feature for the task of detecting replay attacks. The ILPR fea-
ture captures the dynamic characteristics of a signal between
two GCIs and hence it has the potential to be more sensitive to
the differences in genuine and replayed signals. However, the
ILPR feature is calculated pitch synchronously, thus it does not
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Figure 4: Bhattacharya distance between the genuine and spoof
classes for PSRMS and CILPR features. This supports en-
hanced detectability achieved with proposed CILPR features.

produce fixed dimensional representation. On applying pitch
synchronous DCT to the ILPR, a fixed dimensional feature is
derived and referred to as the CILPR feature. First, a baseline
spoof detection system employing the CQCC feature and GMM
classifier is built and evaluated on the ASVSpoof2017 Version
2.0 database. For evaluating the CILPR feature another spoof
detection system is created. On score-level combination of the
acoustic and the proposed source feature based spoof detection
systems, the EERs of 5.89% and 9.41% are obtained for the de-
velopment set and the evaluation set with pooled data training of
the GMMs, respectively. In the future, other speech source fea-
tures can be explored for detecting replay attacks. DNN based
classifiers can also be utilized to further increase the perfor-
mance of the system.
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