
Single-Channel Dereverberation Using Direct MMSE Optimization and
Bidirectional LSTM Networks

Wolfgang Mack, Soumitro Chakrabarty, Fabian-Robert Stöter, Sebastian Braun, Bernd Edler and
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Abstract
Dereverberation is useful in hands-free communication and
voice controlled devices for distant speech acquisition. Single-
channel dereverberation can be achieved by applying a time-
frequency (TF) mask to the short-time Fourier transform
(STFT) representation of a reverberant signal. Recent ap-
proaches have used deep neural networks (DNNs) to estimate
such masks. Previously proposed DNN-based mask estima-
tion methods train a DNN to minimize the mean-squared-error
(MSE) between the desired and estimated masks. Recent TF
mask estimation methods for signal separation directly mini-
mize instead the MSE between the desired and estimated STFT
magnitudes. We apply this direct optimization concept to dere-
verberation. Moreover, as reverberation exceeds the duration
of a single STFT frame, we propose to use a bidirectional
long short-term memory (LSTM) network which is able to
take the relation between multiple STFT frames into account.
We evaluated our method for different reverberation times and
source-microphone distances using simulated as well as mea-
sured room impulse responses of different rooms. An evaluation
of the proposed method and a comparison with a state-of-the-
art method demonstrate the superiority of our approach and its
robustness to different acoustic conditions.
Index Terms: dereverberation, LSTM

1. Introduction
When capturing acoustic sources at a far distance from the de-
vice, the microphone signals often contain a lot of reverberation.
In this case, strong reverberation can harm the intelligibility and
quality of the signals for communication applications [1], and
decrease the performance of automatic speech recognizers [2].
As early reflections are not harmful to or can even contribute
to the speech intelligibility [3], it is sufficient for many applica-
tions to focus on the reduction of the late reverberation. There
have been proposed multi-channel as well as single-channel
dereverberation algorithms [4]. Single-channel dereverberation
is still a challenging task because no spatial cues can be used
but is advantageous due to low hardware requirements.

A widely used approach is single-channel reverberation
suppression in the short-time Fourier transform (STFT) domain
using a Wiener filter. The Wiener filter requires knowledge
of the late reverberation power-spectral-density (PSD), which
has to be estimated in advance. Various models for the late
reverberation have been developed: i) a noise sequence with
an exponentially decaying envelope [5, 6], ii) moving aver-
age processes [7, 8], iii) autoregressive processes [9, 10]. In
[11], the late reverberation PSD is estimated using a relative-
convolutive-transfer-function (RCTF) model, and dereverbera-
tion is achieved by a Wiener filter.

Besides those model-based approaches, deep learning tech-
niques have also been proposed recently for dereverberation.
Han et al. [12] proposed to use a deep neural network (DNN) to
map a reverberant magnitude spectrum to the desired magnitude
spectrum. Direct spectral magnitude estimation, however, was
shown to perform worse than mask estimation (cf. [13, 14]).
A time-frequency (TF) mask for dereverberation can be com-
pared to a STFT domain Wiener filter with the difference that
no PSD estimation is required but a DNN estimates the ratio of
each TF bin which belongs to the desired signal. The desired
signal is then obtained by applying the mask to the spectrum of
the reverberant signal.

There are different types of masks. Binary masks [15] as-
sign TF bins completely to the desired or the undesired signal,
whereas soft masks [16] assign ratios of each TF bin. There are
two types of soft masks: ratio masks (RMs) [16] which apply a
real-valued gain to the magnitude spectrum and complex ratio
masks (cRMs) [17] which apply a complex-valued gain to the
spectrum.

Williamson et al. [18] estimate a cRM for dereverberation,
however, do not perform end-to-end optimization. Instead of
minimizing the mean-squared-error (MSE) between the desired
and the estimated signals, they train their DNN to minimize the
error between the estimated and the desired masks.

In this paper, we propose a DNN which estimates a RM
from a reverberant magnitude spectrum and is trained to di-
rectly optimize the minimum-mean-squared-error (MMSE) be-
tween the estimated and the desired magnitude spectra. In re-
cent experiments in signal separation via TF masking, the direct
MMSE optimization was preferred (e.g. [13, 14, 19]) over mask
optimization. We chose a DNN architecture which can take the
temporal relation of multiple STFT frames into account and is
similar to commonly used networks (e.g. [20, 21]) for signal
separation or enhancement. Our architecture differs from that
proposed in [21] only in the DNN output layer in terms of the
dimensionality and the activation function due to the different
separation scenario.

The paper is structured as follows. In Section 2, we describe
the signal model and the dereverberation process with a RM. In
Section 3, we propose a DNN architecture and a loss-function
to estimate RMs. The data set generation and an overview of the
sets is given in Section 4. Finally, we describe our experiments
and results in Section 5 and compare our proposed method to
[11] and an oracle RM.

2. Problem Formulation
We assume a single speaker in a room captured by a single mi-
crophone. We define the recorded reverberant signal asX(k, n)
in the short-time Fourier transform (STFT) domain with fre-
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Figure 1: DNN architecture: forward = in time direction, back-
ward = reverse time direction; 300 Neurons per LSTM

quency index k and time frame index n. We define the number
of frequency bins per time frame of the one-sided discrete STFT
spectrum asK and the number of time frames per sample asN .
In the STFT domain, the recorded reverberant signal X(k, n)
can be decomposed into

X(k, n) = Xe(k, n) +X`(k, n), (1)

where Xe(k, n) denotes the direct part plus early reverbera-
tion and X`(k, n) the late reverberation. For dereverberation,
Xe(k, n) has to be extracted from X(k, n). In this paper,
we propose a RM based algorithm to estimate Xe(k, n) from
X(k, n).

We want to estimate the positive, real-valued RM, denoted
by M , which minimizes the mean-squared-error (MSE),

MSE =

N−1∑

n=0

K−1∑

k=0

(|X̂e(k, n)| − |Xe(k, n)|)2, (2)

where the estimation of Xe(k, n) is

X̂e(k, n) = M(k, n) ·X(k, n). (3)

Note that the phase of X̂e is equal to the phase of X . The mini-
mization of (2) results in the ideal-ratio-mask (IRM) [16],

IRM(k, n) =
|Xe(k, n)|
|X(k, n)| . (4)

The time-domain signal of X̂e is obtained by computing the
inverse STFT. Hence, the goal is to obtain an accurate estimate
of M . In the following, our approach for mask estimation is
presented.

3. Proposed Method
We propose to estimate M with a DNN trained to minimize the
MSE between |Xe| and |X̂e| as in (2). We refer to the procedure
as direct MMSE optimization.

3.1. DNN Input-Output Representations and Architecture
With our approach, we process the entire STFT sample of a
reverberant signal with a total dimension N × K. One single
element of the DNN-input, denoted as I , is

I(k, n) = log10(|X(k, n)|+ ε), (5)

where a constant ε ∈ R+ is added to avoid zeros in the loga-
rithm. It is mapped via the DNN to the estimated output mask
M of equal shape. Figure 1 depicts the DNN architecture we
used. A similar architecture has been proposed by Hershey et al.
[21] for binary mask estimation. The DNN consists of two bidi-
rectional long short-term memory (LSTM) [22] layers. LSTMs
are a special kind of recurrent DNNs with an internal memory.

We chose a recurrent architecture to be able to process time-
sequences of variable length. Furthermore, the internal mem-
ory of an LSTM allows information to flow through time with-
out significant modification and solves the well-known vanish-
ing gradient problem [23] of normal recurrent DNNs. Bidirec-
tional LSTMs consist of an LSTM where information is passed
forward in time and another one where information is passed
backward in time. In dereverberation, the temporal context is
especially important asX` andXe are both time-shifted, filtered
versions of the same source signal. We chose the bidirectional
LSTM architecture in order to cover the temporal context in the
best possible way.

The DNN output is a dense layer with dimension (K,N,2).
The activation function is a softmax over the last dimension
which introduces the bound 0 ≤ M(k, n) 6 1. The DNN
was only trained for M , however, the DNN output yields addi-
tionally toM a mask forX` due to the softmax activation. This
can be useful for applications where the reverberant signal is of
importance.

Note that the number of time frames N can be variable
during training and testing because we chose a recurrent DNN
architecture, whereas the number of frequencies K has to be
fixed.

3.2. Direct MMSE Optimization
A typically used loss function for mask estimation reduces the
error between M and a desired mask (e.g. [18, 21]). In the case
of RMs, the loss, denoted as J , is given by

J =

N−1∑

n=0

K−1∑

k=0

(IRM(k, n)−M(k, n))2. (6)

Optimization according to this loss function has two disadvan-
tages. Firstly, the IRM is ill-defined. For X(k, n) = 0 and
Xe(k, n) 6= 0, the IRM given by (4) tends to infinity. A so-
lution is to add a small constant to the denominator in (4) if
X(k, n) approaches zero or to compress the mask as in [18].
Secondly, and more severely, the error in (6) only correlates
with the ratio of |X(k, n)| and |Xe(k, n)| but not with their
actual magnitudes. Hence, low-amplitude TF bins can have a
significant impact on the loss.

DNN-based signal separation contributions via mask esti-
mation propose to directly minimize the reconstruction MSE
(e.g. [13, 14, 25]). Directly optimizing the reconstructed mag-
nitude signal with an adapted loss, given by (2), solves both
problems introduced in (6). As the IRM is no longer part of
the loss function, the numerical instability is resolved. In ad-
dition, the loss is expressed in terms of the signal magnitudes
instead of their ratios which increases the impact of energy-rich
TF bins and reduces the impact of energy-poor TF bins. Please
note, that the DNN output is still M , only the loss changed.

The softmax output activation of our approach is, in the case
of destructive interference of Xe(k, n) and X`(k, n), not com-
patible with the goal of estimating the IRM. Destructive inter-
ference describes the case for which

|Xe(k, n)+X`(k, n)| < |Xe(k, n)| < |Xe(k, n)|+|X`(k, n)|,
(7)

i.e., where the magnitude of the addition of both signals is
smaller than the addition of their magnitudes. To investigate
this case, we reformulate the denominator of the IRM given by
(4) with (1) as

IRM(k, n) =
|Xe(k, n)|

|Xe(k, n) +X`(k, n)| . (8)
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Table 1: Overview of the data sets: the first row defines the RIR data sets; measured RIRs in Bar-Ilan; simulated RIRs in the others;
A and B represent rooms; D and T represent the T60 and source-microphone distance sets of the RIRs of each room; the third row
contains information about the number of different RIRs per set

Train-A1 Train-A2 Test-A1 Test-A2 Test-B Bar-Ilan [24]

T60 [s] T1 T2 T1 T3 T3 TB
Dist. [m] D1 D1 D1 D2 D2 DB

Number of RIRs 525 210 525 420 420 156

In the case that (7) holds, then the element IRM(k, n) performs
a magnitude amplification because IRM(k, n) ≥ 1 according
to (8). If an estimated mask is not bounded to one, estimation
errors in M can lead to an amplification of noise or to musi-
cal tones when applied to X(k, n) according to (3). We set the
output layer activation function of our DNN to a softmax to in-
troduce an upper bound of one to the mask values M(k, n) and
mitigate the risk of noise amplification and musical artifacts.

We define the mask with the upper performance bound of
our approach in (2) as the oracle mask,

Mo(k, n) =

{
IRM(k, n), if IRM(k, n) ≤ 1

1, otherwise
. (9)

We compare our results in the evaluation with Mo to show the
best performance our approach can achieve.

4. Data Sets
DNNs need labeled training data to learn a task. We generated
data with separated Xe, X` and X by simulating the reverber-
ation process with artificial room impulse responses (RIRs) for
the training sets and with measured and artificial RIRs for the
test sets.

4.1. Room Impulse Responses and Acoustic Parameters
We generated RIRs with the RIR-generator by Habets [26]. It is
an implementation of the image-method by Allen and Berkley
[27]. We divided each RIR in two parts, one for the generation
of Xe and one for X`. The transition index between the two
respective RIRs was set 50 ms after the direct part in the RIR.
The RIR index of the direct part was estimated with the energy-
decay-curve (EDC) [28] of the respective RIR. We assumed the
direct part at the EDC index which marked a decay of 0.01 dB
in energy.

The computed RIRs are organized in sets shown in Table 1.
For the sets, we consider two simulated rooms, room A with the
dimensions 6 m×7.5 m×2.4 m and room B with the dimen-
sions 9 m×4 m×3 m. The measured RIRs are from the Mul-
tichannel Impulse Response Database from Bar-Ilan university
[24].

Furthermore, we define source-microphone distance
(SMD) sets D and reverberation time sets T , which we assign
in Table 1 to the RIR sets:
T1 = {0.3 s, 0.5 s, 0.7 s, 1 s, 1.5 s}, T2 = {0.8 s},
T3 = {0.2 s, 0.3 s, ..., 1.5 s}, TB = {0.36 s, 0.61 s}.
D1 = {0.5 m, 0.7 m, 1 m, 1.5 m, 2 m, 3 m, 4 m},
D2 = {0.6 m, 2.5 m, 4.5 m}, DB = {1 m, 2 m}.
The RIR sets are used to provide separate training and test sets
for the DNN and to investigate the impact of different acoustic
parameters on the dereverberation performance in Section 5. In
each simulated data set, for every possible combination of ele-
ments in D and T , 15 different RIRs were generated for Train-
A1, 30 for Train-A2, and 10 each for Test-A1, Test-A2, and
Test-B. Source and microphone positions were, with respect to

their distance, randomly selected for each T -D pair in the train-
ing sets. In the test sets, the source-microphone positions were
fixed over the T60 variation to exclude the position influence in
the evaluation over the T60. The minimum distance of a source
or a microphone to a wall was 0.5 m.

The Bar-Ilan data set was measured in a single, varechoic
room with a linear array of 8 microphones. For each T60 el-
ement in TB , there are three linear array variants character-
izing the inter-microphone distance [cm]: [3, 3, 3, 8, 3, 3, 3],
[4, 4, 4, 8, 4, 4, 4], [8, 8, 8, 8, 8, 8, 8]. The source was placed in
a half-circle around the array center with the distances in DB .
The half-circle-resolution is 15 degree. For each of these sce-
narios, we randomly selected a measured RIR of one of the 8
microphones.

4.2. Speaker Data Sets and Parameters
The training and validation speakers were selected from the
Libri Free Speech Corpus [29], from the training and valida-
tion set respectively. The testing speakers were all from the
TIMIT [30] test set. We generated one artificially reverberated
training set with Train-A1 and another one with Train-A2 with
18000 training and 2000 validation samples each. The sample
duration is five seconds. All signals were resampled to a sam-
pling frequency of 8 kHz. The STFT parameters were: 10 ms
hop-size, 25 ms frame-length, and Hann window. We used [11]
as reference method with the proposed parameters. The RCTF
length was set to 13 and the number of frames modelling the
early reverberation to 2 for the simulated RIRs and to 3 for the
measured RIRs [24].

5. Performance Evaluation
Our implementation was done in Python with Keras 1.2.2 [31]
and Theano [32]. We set the dropout [33] to 0.5, recurrent
dropout [34] to 0.2, the clipnorm to 200, the optimizer to
rmsprop, the batch size to 128, the learning rate to 0.001,
K = 129 and N = 500. The dropout parameters and the
clipnorm are equal to those in [35], whereas the batchsize and
the input spectrum size parameters were selected to fit in the
GPU memory.

We evaluated the two DNNs trained with the RIR sets
Train-A1 and Train-A2 from Table 1 by the improvement
in terms of Cepstral Distance (CD) [36], in terms of PESQ
[37] and in terms of frequency-weighted-segmental-signal-to-
reverberation-ratio (fwSegSRR) [38]. Furthermore, we com-
pared our results to those obtained using the method in [11].

5.1. Impact of the Reverberation Time and the Distance on
the Dereverberation-Performance
In this subsection, we evaluate the influence of the T60 of a
room and the SMDs. Figure 2 depicts the influence of the T60

of a room and the SMD.
A low T60 is equivalent to a low amount of reverberation

in the signal. Hence, the recorded signal is not degraded as
strongly as with a high T60. As a result, the ∆CD of all algo-
rithms is lower as depicted in Figure 2a. For a T60 of 0.2 s,
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Table 2: Results dereverberation (mean-values) of DNN-Train-A1, RCTF [11], and the oracle mask

∆CD ∆PESQ ∆fwSegSRR (dB)

Oracle RCTF DNN-Train-A1 Oracle RCTF DNN-Train-A1 Oracle RCTF DNN-Train-A1
Train-A1 2.68 0.42 0.90 1.33 0.25 0.49 12.14 2.04 4.29
Test-A1 2.68 0.43 0.89 1.34 0.26 0.49 12.15 2.07 4.28
Test-A2 2.83 0.40 0.93 1.36 0.23 0.48 12.43 1.87 4.40
Test-B 2.78 0.39 0.90 1.34 0.23 0.48 12.15 1.73 4.18

Bar-Ilan [24] 1.42 0.13 0.37 1.01 0.31 0.40 8.79 0.41 1.27

0.2 0.4 0.6 0.8 1.0 1.2 1.4
− 1.5

− 1.0

− 0.5

0.0

0.5

1.0

1.5

T60 [s]

∆
C

D

DNN-Train-A1
DNN-Train-A2
RCTF [11]

(a)

0.6 2.5 4.5

− 0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Source-Microphone Distance [m]

∆
C

D

(b)
Figure 2: ∆CD for Test-B over the reverberation time (a) and
the source-microphone distance (b); mean-values and standard
deviation shown by the error-bars

there is even a further degradation of the signal in terms of CD.
Only the DNN trained with Train-A1 does not further degrade
the signal on average. For a higher reverberation time, the im-
provement of DNN-Train-A1 rises until it saturates at a T60 of
approximately 0.8 s, whereas the performance of the others de-
creases. DNN-Train-A1 performs best because it was trained
with a variety of T60s. DNN-Train-A2 was trained with a sin-
gle T60 of 0.8 s. Near 0.8 s in Figure 2a, DNN-Train-A2 per-
forms similar to DNN-Train-A1. The further apart of the single
training T60 of DNN-Train-A2, the higher is the improvement
gap between both networks. Interestingly, DNN-Train-A2 also
performs worse for T60s lower than 0.8 s. Hence, training a net-
work only with a maximum T60 is not expedient. Nevertheless,
both DNNs adapted to T60s with which they were not trained.
Furthermore, DNN-Train-A1 outperforms [11] for all T60s, re-
gardless whether they were part of the training set or not.

Figure 2b shows the ∆CD over the SMD with distances
which were not in the training set. Both DNNs show an in-
creased performance for a higher SMD, whereas [11] is rela-
tively stable in terms of the mean-improvement value. Only the
variance is reduced for a higher distance. By training DNN-
Train-A1 with more T60s than DNN-Train-A2, the variance of
the SMD results was reduced. Furthermore, as none of the de-
picted SMDs was in the training set, the networks adapt well
to unseen SMDs. The results of the PESQ and the fwSegSRR
show a similar trend.

5.2. Results of Different Simulated and Measured Rooms
Experiments with respect to the room and measured RIRs are
covered in this subsection. We focus here on DNN-Train-A1
and compare it to [11] and to the oracle mask defined in (9).
The results are shown in Table 2.

The oracle mask yields the maximum improvement our pro-
posed algorithm can achieve. There is a significant gap in all
metrics compared to the oracle results. However, our approach
achieved superior results compared to [11] in all metrics.

We tested whether the DNN adapted to the source-
microphone positions in Train-A1. Therefore, we evaluated all
RIRs in Train-A1 and computed Test-A1 with the same parame-
ters but different room positions. The results depicted in Table 2
show no significant performance difference indicating no over-
fitting of DNN-Train-A1 to the room positions in Train-A1.

Test-A2 was generated with a different set of T60s and dis-
tances. Because of the impact of those parameters as shown
in Figure 2, we cannot directly compare the results of Test-A1
or Train-A1 with Test-A2. Test-B has the same T60 and SMD
parameters as Test-A2 but a different room geometry. The im-
provement results do not show a major difference which means
that the DNN did not overfit to those parameters. Hence, the test
performance of DNN-Train-A1 was independent of whether the
room, the T60, or the SMD were parameters of the training set.
This shows the robustness of our approach.

The results of the measured RIRs of Bar-Ilan show a sig-
nificantly decreased performance for all methods under test in-
cluding the oracle mask. We assume this to be caused by the
different T60 and SMD parameters of the measured RIRs. Both
are in areas where the proposed algorithm showed limited re-
sults. A normalization of the results with the respective ora-
cle mask results shows a similar performance of our algorithm
given simulated and tested RIRs although the DNNs were only
trained with simulated RIRs.

6. Conclusion
We presented a single-channel dereverberation approach with
a DNN for TF mask estimation which directly optimizes the
MMSE between the estimated and the desired magnitude spec-
tra. This approach ensures that the training-loss is related to
the signal-amplitudes and, therefore, optimizes directly for the
signal magnitude reconstruction. An evaluation showed the su-
perior performance of our algorithm compared to [11]. Fur-
thermore, we investigated the influence of some selected room
acoustic properties on the performance. Especially the reverber-
ation time showed a significant impact on the performance. Our
approach adapted to measured and simulated room impulse re-
sponses, source-microphone distances and reverberation times.
Moreover, we showed the significant gap to the oracle mask
which motivates further investigations. Mask estimation meth-
ods compensating for destructive interference with mask-values
greater than one could further improve the results, however, at
the risk of noise amplification and musical tones.
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