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Abstract 

Incorporating phonetic information has been shown to improve 
the performance of exemplar-based voice conversion. A 
standard approach is to build a phonetically structured 
dictionary, where exemplars are categorized into sub-
dictionaries according to their phoneme labels. However, 
acquiring phoneme labels can be expensive, and the phoneme 
labels can have inaccuracies. The latter problem becomes more 
salient when the speakers are non-native speakers. This paper 
presents an iterative dictionary-learning algorithm that avoids 
the need for phoneme labels, and instead learns the structured 
dictionaries in an unsupervised fashion. At each iteration, two 
steps are alternatively performed: cluster update and dictionary 
update. In the cluster update step, each training frame is 
assigned to a cluster whose sub-dictionary represents it with the 
lowest residual. In the dictionary update step, the sub-dictionary 
for a cluster is updated using all the speech frames in the cluster. 
We evaluate the proposed algorithm through objective and 
subjective experiments on a new corpus of non-native English 
speech. Compared to previous studies, the proposed algorithm 
improves the acoustic quality of voice-converted speech while 
retaining the target speaker’s identity. 

Index Terms: voice conversion, dictionary learning 

1. Introduction 

Voice conversion (VC) is a technique that converts utterances 
from a source speaker to sound as if a target speaker had 
produced them. VC finds applications in many real-world tasks 
such as pronunciation training [1], personalized text-to-speech 
synthesis [2], and speaker spoofing [3]. Different approaches to 
VC have been proposed, statistical parametric methods based 
on Gaussian Mixture Models (GMM) [4, 5] and Deep Neural 
Networks (DNN) [6-9] being widely used. For low-resource 
settings, however, methods based on sparse representations 
have been shown to be more effective. In these methods, 
exemplars from a source speaker and a target speaker are 
selected from a parallel training corpus.  At runtime, a source 
spectrum is represented as a sparse non-negative combination 
of the source exemplars, and then the target spectrum is 
approximated by multiplying the source’s sparse weight matrix 
with the target’s exemplars. Exemplar-based methods require 
much smaller training corpora [10] and are more robust to noisy 
speech than GMMs [11]. As a result, exemplar-based methods 
can be very useful in applications where collecting a large 
corpus is impractical or the acoustic quality of speech is poor  
(e.g., pronunciation training [12, 13]). 

Recent studies [14-17] have shown that the performance of 
exemplar-based VC can be improved by incorporating phonetic 
information. A standard approach is to build a phonetically 
structured dictionary, where exemplars are categorized into 
sub-dictionaries according to their phoneme labels. Phoneme 

labels are generally derived from either force alignment (FA) or 
automatic speech recognition (ASR). FA can produce accurate 
results but requires an orthographic transcription of the 
utterance, which can be expensive. When transcriptions are not 
available, phoneme labels can be obtained via ASR, but the 
process is error-prone.  These problems are compounded in the 
case of non-native speech due to mispronunciations and 
disfluencies. In the end, using inaccurate phoneme labels can 
degrade rather than improve VC performance. Even if the 
phoneme labels are accurate, they are often too coarse to fully 
capture detailed phonetic information in speech (e.g., 
allophones). 

To address this problem, we propose an iterative dictionary-
learning algorithm with hard-decision rules (HDDL) that avoids 
the need for phoneme labels. The proposed algorithm is 
inspired by “hard-decision Expectation Maximization” 
algorithms [18-22] commonly used for learning models that 
depend on unobserved latent variables. Figure 1 summarizes the 
approach. The algorithm consists of two main steps: cluster 
update and dictionary update. A cluster is defined as a set of 
speech frames sharing acoustic similarities. In the cluster 
update step, each training speech frame is assigned to the cluster 
whose sub-dictionary can best represent the speech frame (i.e., 
with the lowest residual). In the dictionary update step, the 
assignment of clusters is fixed, and the sub-dictionary for a 
cluster is updated using all the speech frames in the cluster. 
Once the structured dictionaries are learned, we can use any 
exemplar-based method to perform VC. We conducted both 
objective and subjective experiments to evaluate the proposed 
algorithm and compared it against two baseline VC methods. 
Our results show that HDDL improves the acoustic quality and 
retains the target speaker’s identity on non-native English 
speech with no extra computations at runtime. In our final 
analysis, we use the ground-truth phoneme labels and show that 
the learned structured dictionaries are phonetically meaningful.  

2. Literature review 

Statistical parametric models, such as GMMs and DNNs, are 
among the most common VC methods. GMM-based methods 
[4, 5] learn the joint distribution of source and target short-time 
spectra, then estimate the target spectral features through least-
squares regression. In contrast, DNN-based methods map the 
source spectral features directly into the target space through 
various network structures such as restricted Boltzmann 
machines [6], stacked auto-encoders [7], and variational auto-
encoders [8]. Other statistical models such as partial least 
squares [23] and HMMs [24] have also shown success in VC 
tasks. 

Alternatively, nonparametric exemplar-based methods 
have become increasingly popular in recent years. Takashima 
et al. [11] first applied exemplar-based sparse representation to 
perform VC in noisy environments. Methods have been 
proposed to improve the sparse representation in both exemplar 
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selection and matrix factorization methods [10, 25].  

Including phonetic information has been shown to improve 
exemplar-based VC methods [14, 16, 17]. Aihara et al. [14] first 
used phoneme labels to construct a phonetically structured 
dictionary. Berrak Sisman et al. [16] used a similar strategy to 
build the structured dictionary in training, but they also use 
phoneme labels at runtime. Finally, Liberatore et al. [17] used 
the centroid for each phoneme as exemplars and constructed a 
compact dictionary.  

Dictionary-learning techniques have been used to learn 
more effective exemplar dictionaries. Fu et al. [26] proposed a 
joint dictionary learning algorithm that directly learns exemplar 
dictionaries from time-aligned utterances. Aihara et al. [15] 
learned the exemplar dictionaries through a parallel dictionary 
learning algorithm with a graph-embedded discriminative 
constraint estimated from phoneme-labeled training data. 

Relation to prior work. Our proposed method differs from 
prior studies in several respects. First, our method learns the 
dictionaries directly from the data, without using any 
supervision signals (phoneme labels [14-16], etc.). Second, in 
contrast with conventional exemplar-based methods [10, 11], 
HDDL is not restricted to build dictionaries from training 
frames; instead, the learned dictionaries reflect the distribution 
of the data, improving the VC performance. Finally, our learned 
dictionaries are with sub-dictionary structures, which is 
different from [15, 26].  

3. Voice conversion framework 

We first describe the conventional exemplar-based VC 
framework. During training, a source exemplar dictionary �� ∈
ℝ�×�  and a time-aligned target exemplar dictionary �� ∈
ℝ�×�  are learned, where � is the number of exemplars, and 
each exemplar is a �-dim spectral feature vector. At runtime, 
an �-frame source utterance � ∈ ℝ�×� is represented as, 

� ≅ ��� (1) 

where � ∈ ℝ�×� is a sparse non-negative weight matrix (i.e., 
a sparse representation). Given �  and �� , �  can be 
approximated via sparse coding: 

� = argmin
�

�(�, ���) + �Ψ(�) , �. �.  � ≥ 0 (2) 

where �(∙) is a distance metric, typically the KL-divergence or 
the Euclidean distance, Ψ(�) is a regularization term, most 
commonly based on the �� norm to enforce sparsity, and � is 
the sparsity penalty. Given ��  and �, a target utterance �� ∈
ℝ�×� can be generated as: 

 �� = ��� (3) 

3.1. Incorporating phonetic information 

A typical way to incorporate phonetic information in exemplar-
based VC is to construct a phonetically structured dictionary 
[14, 16]. Given � phonemes, �� and �� are further divided into 
�  sub-dictionaries. For each sub-dictionary, a number of 
speech frames are first selected according to their phoneme 

labels, and a clustering algorithm is used to find �  cluster 
centroids, which then become the �  exemplars for that 
phoneme. Formally, �� and �� can be expressed as follow, 

�� =  [��
�, ��

�, … , ��
�] (4) 

�� =  [��
�, ��

�, … , ��
�] (5) 

where ��
� ∈ ℝ�×�  and ��

� ∈ ℝ�×� denote the source and the 
target exemplar sub-dictionaries of the � -th phoneme, 
respectively, and �∈ {1, 2, … , �}. In practice, phoneme labels 
for the speech frames are derived from force alignment or ASR.  

Given the constructed structured dictionary, VC can be 
performed as described in [14-16]. In this paper, we use a 
similar approach at runtime as in [14]. Namely, for the �-th 
frame �� of source utterance, we compute the sparse weight �� 
with respect to each sub-dictionary, 

��  = argmin
�

��� − ��
���

�

�
+�‖�‖� , �. �.  � ≥ 0 (6) 

and then select a sub-dictionary with largest weight as, 

�∗ = argmax
�

����
�

�
(7) 

Finally, the corresponding target frame �� is generated as, 

�� =  ��
�∗

��∗
(8) 

3.2. Problems with labeled data 

As described in Section 1, building structured dictionaries using 
phoneme labels produced by FA or ASR can be expensive and 
degrade the VC performance if the labels are not correct. To 
avoid the need for phoneme labels, we proposed an iterative 
dictionary-learning algorithm inspired by “hard-decision 
Expectation Maximization” algorithms [18-22]. 

4. Proposed approach: hard decision 
dictionary learning 

Let � ∈ ℝ�×�  and � ∈ ℝ�×�  be the source and target 
utterances of a time-aligned parallel training corpus, where � is 
the number of spectral features and � is the number of speech 
frames.  Following [26], we concatenate the time aligned source 
and target utterances as � = [�, �]� . Our goal is to learn a 
concatenated dictionary � = [��, ��]� , where ��  and �� 
consist of sub-dictionaries, as defined in eqs. (4-5). For notation 
simplicity, we define the concatenated sub-dictionary as �� =

���
�, ��

�  �
�

. Consequently, we have  � = [��, ��, … , ��]. We 
solve this dictionary-learning problem through an iterative 
algorithm. At each iteration, we perform two steps: cluster 
update and dictionary update. Details of each step are provided 
in following subsections. The overall algorithm is summarized 
in Table 1. 

4.1. Cluster update 

Let us denote the concatenated dictionary and sub-dictionary in 
the �-th iteration as �(�) and ��,(�). In the cluster update step, all 
the ��,(�) are fixed. For each frame �� in �, we assign �� to the 

cluster whose sub-dictionary ��,(�)  represents ��  with the 

 
Figure 1: The workflow of the HDDL. 
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lowest residual computed. Formally, we denote the residual of 
�� respect to ��,(�) as, 

��
�,(�)

= ��� − ��,(�)��
�,(�)

�
�

�
(9) 

where ��
�,(�)

 are the coefficients of the sparse representation. 

We compute ��
�,(�)

 as, 

��
�,(�)

= argmin
�

��� − ��,(�)��
�

�
+ �‖�‖� (10) 

which we solve using the Least Angle Regression (LARS) [27] 
algorithm. Once the residuals are updated, we can assign �� a 

latent cluster label ��
(�)

 as, 

 ��
(�)

= argmin
�

��
�,(�) (11) 

Then, we divide � into � clusters based on their labels ��
(�)

 as, 

��,(�) = �� ���
(�)

= �� ��� , �= 1, 2, … , � (12) 

where ��,(�) denotes all the speech frames in the �-th cluster, 
and �(∙) is the indicator function. 

4.2. Dictionary update 

In the dictionary update step, we fix the clusters and update the 
sub-dictionaries. For all the speech frames in the �-th cluster, 
we wish to find a sub-dictionary ��,(���) that provides a sparse 
representation with minimum residual. In other words, we solve 

the following problem for each sub-dictionary ��,(���): 

��,(���) = argmin
��

���,(�) − ����
�

�
+ �‖�‖� (13) 

which we solve using the online dictionary-learning algorithm 
proposed in [28].  

5. Experiments 

5.1. Corpus 

We used four non-native English speakers from the L2-
ARCTIC dataset1: ABA (Arabic male), HKK (Korean male), 
LXC (Chinese female), and SKA (Arabic female). Each 
speaker produced the full set of ARCTIC [29] prompts. The 
non-native English speakers in L2-ARCTIC are intermediate-
level English learners, so their speech contains disfluencies and 
mispronunciations. As such, phoneme labels produced by force 
alignment can be inaccurate, which becomes a problem for 
conventional exemplar-based VC methods. We also used two 
native English speakers from ARCTIC: BDL (male), CLB 
(female). For each speaker, we selected three sets of utterances: 
20 utterances for training, 10 utterances for validation, and 50 
utterances for testing2.  

5.2. Implementation details 

We used STRAIGHT [30] to extract a 1,025-dimensional 
spectral envelope, fundamental frequency (F0) and aperiodicity 
for each utterance. We compressed the STRAIGHT spectrum 
using 24 MFCCs (25 Mel-filterbanks, 25 coefficients, removing 
MFCC�, which is energy), and used the MFCCs as the spectral 
feature. No dynamic contextual features were used. We set the 
number of clusters to 41, the number of phonemes in ARCTIC. 

                                                                 
 
1 The L2-ARCTIC dataset is available at  
https://psi.engr.tamu.edu/l2-arctic-corpus/. 

We used 100 basis vectors for each sub-dictionary (i.e., 4,100 
in total). Source and target utterances were time-aligned using 
dynamic time warping [31]. 

We used the SPAMS sparse coding toolbox [28, 32] to 
solve for eqs. (10) and (13). Additionally, we normalized the 
source F0 to match the target space using log-scale mean and 
variance normalization [5]. We estimated the converted spectral 
envelope from the converted MFCCs, and finally synthesized 
the converted speech with the converted spectral envelope, 
normalized F0 and source aperiodicity. 

5.3. Experimental design 

We conducted both objective and subjective experiments. In 
each experiment, we compared the VC performance of the 
proposed method (HDDL) with two baselines: a conventional 
GMM approach [4], and the voice conversion method proposed 
by Aihara et al.: Phoneme-Categorized Dictionaries (PCD) 
[14]. To evaluate the proposed structured dictionary, we used a 
similar approach as [14] at runtime except we did not use 
phoneme labels to build the dictionaries, so it is straightforward 
to compare our method with PCD. We used similar parameters 
for PCD (41 sub-dictionaries, 100 basis vectors per sub-
dictionary) as our approach to guarantee a fair comparison.  The 
GMM based method in [4] is one of the most widely used 
parametric VC models. We did not use MLPG [5] in our GMM 
conversion, as it does not converge well under such a small 
training set. We set the number of mixtures in GMM to 32, as 
suggested in [5]. We consider four VC directions: BDL to ABA, 
BDL to HKK, CLB to LXC, and CLB to SKA. All the reported 
results are averaged over these four VC directions. 

6. Results 

6.1. Objective evaluation 

We evaluated the three systems objectively by computing the 
Mel Cepstral Distortion (MCD) [33] between VC syntheses and 
the time-aligned target utterances, which served as ground-truth. 
Results are shown in Figure 2 (a). HDDL outperforms PCD 
(2.82 vs. 3.05 dB), which shows that the learned structured 
dictionaries can improve VC performance. Though GMM has 
lower MCD than HDDL, GMMs suffer from over-smoothing 
issues [5], and previous studies indicate that GMMs do not 
achieve better VC performance even if they have lower MCD 
[15, 34]. 

2  Utterances for each set were selected using a maximum entropy 
criterion to ensure good phonetic balance. 

Table 1: HDDL algorithm 

Inputs: concatenated training utterances �, the number of 

clusters � 

Outputs: learned structured dictionary �∗ = [��,∗, ��,∗, … , ��,∗] 

Initialization: randomly assign a latent cluster label to 

each training frame and divide the training frames to � 
clusters according to the latent cluster labels, as in eq. 

(12). Then initialize the dictionary �(�) = [��,(�), ��,(�), … , ��,(�)] by 
solving eq. (13). 

Repeat until convergence: 

Cluster update: compute ��
�,(�)

 by solving eq. (10), compute 

��
�,(�)

 as in eq. (9), assign each training frame �� a latent 

cluster label ��
(�)
 as in (11), and divide the training data 

into � clusters as in (12). 

Dictionary update: update each sub-dictionary ��,(���) in 

�(���) by solving eq. (13). 

Return �∗ = [��,∗, ��,∗, … , ��,∗] 
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6.2. Subjective evaluations 

We conducted subjective listening tests on Amazon Mechanical 
Turk to measure acoustic quality and voice similarity:  

- Acoustic quality (Mean Opinion Score). We recruited 20 
participants to rate the 5-point MOS (1: bad, 5: excellent) of 
60 utterances from three VC systems: 20 utterances per 
system, 5 utterances per VC direction.  

- Voice Similarity Score (VSS) [35]. We recruited 20 
participants to rate the VSS of 120 utterance pairs from three 
VC systems: 40 pairs per system, 10 pairs per VC direction. 
Half of them were VC-source pairs, and the other half were 
VC-target pairs. Following [1], we played utterances in 
reverse to reduce the influence of accents in the perception 
of voice identity. Participants were required to decide if a pair 
of utterances were produced by the same speaker and rate 
their confidence on a 7-point scale. VSS results were 
computed by collapsing the responses into a 14-point scale (-
7: definitely different speakers, +7: definitely the same 
speaker).   

MOS results are shown in Figure 2 (b). Participants 
consistently rated HDDL as having higher MOS than both PCD 
and GMM, and the results were statistically significant (� ≪
0.001 in both cases). VSS results are shown in Figure 2 (c).  
Listeners are “confident” that the speaker of the converted 
speech is different from the source speaker (VSS≈ − 2.4) and it 
is the same as the target speaker (VSS≈ +2.6). A t-test reveals 
no statistically significant differences in VSS between HDDL 
and either PCD or GMM (� ≫ 0.05 in both cases). The reasons 
of a low VSS could be two-fold. First, Munro and Derwing [36] 
have shown that playing utterances in reverse does not entirely 
eliminate the perception of accent. Second, it is harder for 
listeners to rate reversed utterances than the original utterances, 
so they are less confident about their choices.  

7. Discussion 

Our experiments show that the proposed method can improve 
the VC acoustic quality over PCD on non-native speech (where 
phoneme labels may not be reliable) without sacrificing the 
target speaker’s identity. In addition, the proposed method does 
not require phoneme labels in training nor cause extra 
computations at runtime. Compared with GMMs, methods 
based on sparse representations (HDDL and PCD) show an 
obvious improvement on acoustic quality in this low-resource 

                                                                 
 
1 Labels for /AX/, /OY/, and /ZH/ are missing as they do not occur in 
our training data. 

setting, similar to results in previous studies [10, 11].  

In our final analysis, we explore the relationship between 
the ground-truth phoneme labels1 and the learned clusters. In 
“hard-decision” algorithms, clusters commonly represent latent 
variables; phonemes can be thought of as latent variables in 
HDDL. For each speech frame, we computed its residual (eq. 
(9)) and assigned the frame to the cluster which minimized the 
residual. Then, using the corresponding forced-aligned 
phoneme labels for each frame, we computed the cluster 
distribution of each phoneme (i.e. which clusters were assigned 
to speech frames with the same phoneme label). For each 
phoneme, we matched it with the cluster that most frequently 
represented that phoneme. The confusion matrix of ground-
truth phonemes vs. the matched clusters is shown in Figure 3. 
The dark diagonal elements indicate that each cluster is 
preferentially associated with a single phoneme label. 
Confusions occur but are usually restricted to be within the 
same manner of articulation. For example, the sub-dictionaries 
with the latent phoneme labels of “7” and “23” are both good at 
representing nasals. The sub-dictionaries “11”, “16”, “21”, “25”, 
“37” are all used for stops. Both “22” and “39” can represent 
/EY/, /IH/, /IY/ well, which are all front vowels. These results 
indicate that the proposed algorithm can learn latent structures 
of speech (e.g. phonemes) without using any supervision signal.  

8. Conclusion 

In this paper, we proposed an iterative algorithm to learn 
phonetically structured dictionaries. In contrast with previous 
studies, we did not use phoneme labels, thus avoiding the 
degradation of VC performance caused by inaccurate phoneme 
labels derived from FA or ASR. We conducted both objective 
and subjective experiments to evaluate the proposed algorithm, 
and compared it against two baselines: a conventional GMM 
approach and a state-of-the-art exemplar-based VC algorithm. 
Results showed that the proposed method improves the acoustic 
quality and retains the target speaker’s identity. 
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Figure 2: (a) Average MCD for HDDL, PCD, and GMM. (b) 
Acoustic quality results with 95% confidence intervals. (c) 

Voice similarity results (vc-src: VSS between VC and source 
speaker. vc-tgt: VSS between VC and target speaker). 

 
Figure 3:  Confusion matrix between forced-aligned phoneme 
labels and the matched clusters. Y-axis values are phonemes 
(sorted by manner of articulation), and X-axis values are the 

cluster IDs. 
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