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Abstract
We propose a novel speech denoising framework by minimiz-
ing the probability of error (PE), which measures the deviation
probability of the estimate from its true value. To develop the
minimum PE (MPE) criterion, one requires the knowledge of
the noise probability density function (p.d.f.), which may not
be available in a parametric form in speech denoising applica-
tions. Therefore, we adopt two approaches for modeling the
noise p.d.f.: (i) Gaussian modeling based on adaptive variance
estimation; and (ii) a Gaussian mixture model (GMM) in view
of its approximation capabilities. We consider discrete cosine
transform (DCT) domain shrinkage, where the optimum shrink-
age parameter is obtained by minimizing an estimate of the PE.
A performance assessment for real-world noise types shows that
for input signal-to-noise ratios (SNR) greater than 5 dB, the
proposed MPE-based point-wise shrinkage estimators outper-
form three benchmark techniques in terms of segmental SNR
and short-time objective intelligibility (STOI) scores.
Index Terms: Minimum probability of error, Speech denoising,
Gaussian mixture model, point-wise shrinkage estimator.

1. Introduction
Ambient acoustic noise introduces unwanted disturbances in
speech signals leading to a degradation in speech quality,
thereby affecting the downstream processing in speech commu-
nication systems and limiting the ability of listeners to under-
stand and concentrate. Therefore, it is imperative to suppress
noise and enhance the quality and intelligibility of speech. A
typical approach to speech denoising is to minimize an appro-
priate distortion measure, also referred to as the risk function
in statistics literature, to obtain an estimate of the clean signal.
However, direct minimization of risk requires the knowledge of
the underlying clean signal or its statistics, which is difficult to
obtain in practice. Hence, one needs to rely on the estimate
of the clean signal statistics. Generative processes of speech
signals exhibit wide variabilities based on speaker, phonemes
and their durations, language, etc., which render the speech sig-
nal a non-stationary stochastic process. Therefore, estimating
the clean speech prior is difficult, since it necessitates intricate
stochastic modeling and requires a rigorous training phase.

Speech enhancement techniques can be broadly categorized
into (i) spectral subtraction techniques [1–3], which involve the
subtraction of the noise spectrum from the spectrum of noisy
speech; (ii) Wiener filtering [4–6], which relies on the estimates
of the power-spectra of clean speech and noise; (iii) subspace
techniques [7], wherein one utilizes the properties of the sig-
nal and noise subspaces; and (iv) statistical model-based ap-
proaches, which are setup in a Bayesian framework and rely on
an estimate of the clean signal prior [8–16]. Recently, Xu et al.
demonstrated the use of deep neural networks for learning the
nonlinear map from noisy speech to clean speech [17, 18].

In this paper, emphasis is placed on developing a non-
Bayesian technique for speech denoising. Our formulation re-
lies only on the noise statistics in its entirety, unlike the mean-
squared error (MSE) formulations, in which the first- and
second-order statistics suffice [19]. A statistical model is not
assumed on the clean speech signal. The key deviation with
respect to the state-of-the-art lies in the choice of the distor-
tion measure. We do not employ the standard MSE metric or a
perceptual distortion metric. Instead, we consider a novel crite-
rion for denoising, namely the probability of error (PE), which
measures the probability of deviation between the ground-truth
signal and its estimate. This criterion requires one to know or
at least estimate the noise p.d.f., and places no statistical as-
sumptions on the clean signal. The PE criterion is measured
in the short-time discrete-cosine transform (DCT) domain. We
rely on the parsimony of representation and energy compaction
of clean speech in the DCT basis. Soon et al. showed that
the DCT is superior to the discrete Fourier transform (DFT) for
speech denoising [20]. The noise, however, is non-sparse in the
DCT basis. This representation therefore justifies the use of a
point-wise shrinkage estimator for denoising.

Since the oracle PE requires one to know the ground-truth,
we approximate it by a surrogate function that depends solely
on the noisy observations, leading to a practically realizable es-
timate. Since denoising entails a reduction in noise variance
in each spectral band, the PE is minimized with respect to the
shrinkage parameter over the interval [0, 1], which is a great
convenience as far as optimization is concerned. We develop
two different variants of the PE risk, both point-wise, but one
is an instantaneous estimator whereas the other incorporates
temporal smoothing. Since the key objective is to combat real-
world noise types (street, train, and F16 noise), which are non-
stationary and whose distributions are not available a priori, we
adopt two p.d.f. models, one based on the Gaussian and the
other employing a GMM. Experimental results are presented
on the real-world noise types for various input signal-to-noise
ratios (SNRs) and compared with the state of the art.

2. MPE for Speech Denoising
Consider the additive observation model

xn = sn + wn, n = 1, 2, · · · , N, (1)

where sn denotes the clean signal and xn is the observation cor-
rupted by noise samples wn, which are independent and identi-
cally distributed (i.i.d.) with zero mean and variance σ2. Short-
time discrete cosine transform (DCT) domain processing is con-
sidered for denoising within the proposed MPE formalism. The
short-time DCT representation of (1) takes the form

Xk,i = Sk,i+Wk,i, k = 1, · · · ,K, and i = 1, · · · ,M, (2)

where k and i denote the DCT coefficient and the speech frame
indices, respectively. For estimating Sk,i, we develop a point-
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wise estimator Ŝk,i = ak,iXk,i, where the shrinkage factor
ak,i ∈ [0, 1] is selected optimally based on the MPE criterion.

2.1. MPE criteria for point-wise shrinkage

Since the estimator is point-wise, we drop the indices k and i to
maintain brevity of notation, and define the PE as

R = P
(∣∣∣Ŝ − S

∣∣∣ > ε
)
, (3)

where ε > 0 is a predefined tolerance parameter. Substituting
Ŝ = aX = a(S +W ), the risk in (3) evaluates to

R (a, S) = P (|a(S +W )− S| > ε)

= 1− F
(
ε− (a− 1)S

a

)
+ F

(
− ε+ (a− 1)S

a

)
, (4)

where F (·) is the cumulative distribution function (c.d.f.) of
the noise in the DCT domain. SinceR depends on the ground-
truth S, it is impractical to optimize it directly over a, as the
estimator would be unrealizable. Therefore, we minimize an
estimate of R, which is obtained by replacing S in (4) with its
noisy counterpart X . Such an estimate R̂ takes the form

R̂(a,X) = 1− F
(
ε− (a− 1)X

a

)
+ F

(
− ε+ (a− 1)X

a

)
,

and correspondingly, the optimal shrinkage is obtained as
aopt = arg min

0≤a≤1
R̂, by performing a grid-search over [0, 1] with

a grid-spacing of 0.01.
We consider two types of shrinkage estimators. The

first one, referred to as MPE-1, applies different shrinkage
factors to each spectral coefficient {Xk,i} in the ith frame.
The optimal shrinkage is selected coefficient-wise as aopt

k,i =

arg min
0≤a≤1

R̂(a,Xk,i). In the second variant, which we refer to

as MPE-2, a single shrinkage factor is applied to a group of co-
efficients bunched along i, resulting in an estimator of the form
Ŝk,i = aopt

k,iXk,i, where

aopt
k,i = arg min

0≤a≤1

+τ∑

t=−τ
R̂(a,Xk,i−t). (5)

The parameter τ determines the extent of temporal averaging.

2.2. Approximating unknown noise distributions

In real-world speech denoising scenarios, the noise distribution
is often not known a priori in parametric form. In such scenar-
ios, one has to model the noise p.d.f. appropriately. We con-
sider two approaches for noise modeling: In the first one, we
use a Gaussian, whose variance is estimated adaptively from
the noisy speech signal, whereas in the second approach, we
employ a GMM-based model. The effectiveness of the models
will be validated experimentally.

2.2.1. Gaussian model and adaptive variance estimation

This approach relies on the assumption that the time-domain
noise samples within a frame are i.i.d. random variables. Since
the DCT coefficients are linear combinations of i.i.d. random
variables, considering the frame length to be sufficiently large,
we invoke the central limit theorem, which assures that each
DCT coefficient Wk,i is approximately Gaussian distributed.

A stochastic model based voice-activity detector (VAD) [26]
is employed to estimate the variance of Wk,i. Going by the
recommendation in [20], we use the following recursion to es-
timate the noise variance adaptively:

σ̂2
k,i =

{
ησ̂2

k,i−1 + (1− η)X2
k,i, if ith frame is noise-only,

σ̂2
k,i−1, otherwise,

where η = 0.98. Essentially, the noise variance is updated
if the VAD identifies that the frame under consideration corre-
sponds to noise alone. In the sequel, the point-wise shrinkage
estimators MPE-1 and MPE-2 for the Gaussian noise model are
referred to as MPE-1-G and MPE-2-G, respectively.

2.2.2. Noise modeling using GMM

The motivation for using GMM stems from the fact that it can
approximate any p.d.f. with a finite number of discontinuities
sufficiently accurately [21]. The L-component GMM p.d.f.
with parameters {αm, θm, σm}Lm=1 is given by

f(W ) =
L∑

m=1

αm

σm
√
2π

exp

(
− (W − θm)2

2σ2
m

)
, (6)

and the corresponding PE risk turns out to be

R̂ =
L∑

m=1

αm

[
Q

(
ε− (a− 1)X − aθm

aσm

)
+

Q

(
ε+ (a− 1)X + aθm

aσm

)]
, (7)

where Q(u) = 1√
2π

∫∞
u

exp
(
− t2

2

)
dt. The number of GMM

components M is selected following the Bayesian information
criterion (BIC) [23]. For each subband, the parameters of the
GMM are estimated using the expectation-maximization (EM)
algorithm [22] based on training data corresponding exclusively
to noise. The GMM-based p.d.f. modeling, when used in con-
junction with the MPE-1 and MPE-2 estimators, are referred
to as MPE-1-GMM and MPE-2-GMM, respectively. The noise
samples during training and testing are taken to be different.

3. Simulation Results
Clean speech recordings from the Noizeus database (8 kHz
sampling frequency) [24] are used in our experiments. The
noise samples are taken from both Noizeus (train and street
noises) and Noisex-92 (for F16 noise; downsampled to 8 kHz)
databases [25]. We consider frame-by-frame processing, with
a Hamming window, frame length of 40 ms, and an overlap of
75% between consecutive frames. The value of τ in MPE-2 in
(5) is set to 3, and we choose ε = 3σ, where σ is the noise
standard deviation.

We perform a comparative assessment of the MPE-based
techniques with three benchmarking algorithms under differ-
ent noise conditions1. The algorithms chosen for the compar-
ison are: (i) Wiener filter technique, which uses a decision-
directed approach for a priori SNR estimation (WFIL) [6]; (ii)
log-spectral amplitude estimator (LSA), which minimizes the
mean-squared error (MSE) of the logarithm of clean speech
spectral amplitude [9]; and (iii) Bayesian non-negative matrix

1Example speech files are available at https://spectrumee.
wixsite.com/mpe-se.

1142



−5 0 5 10 15 20

−4

−2

0

2

4

6

8

INPUT SNR (dB)

S
S

N
R

 G
A

IN
 (

d
B

) 

 

 

BNMF LSA WFIL MPE−1−G MPE−2−G MPE−1−GMM MPE−2−GMM

−5 0 5 10 15 20

−4

−2

0

2

4

6

8

INPUT SNR (dB)

S
S

N
R

 G
A

IN
 (

d
B

) 

−5 0 5 10 15 20

0.3

0.35

0.4

0.45

0.5

0.55

0.6

INPUT SNR (dB)

P
E

S
Q

 G
A

IN

−5 0 5 10 15 20

−0.02

0

0.02

0.04

INPUT SNR (dB)

S
T

O
I 
G

A
IN

(a) SSNR (F16 noise) (b) PESQ (F16 noise) (c) STOI (F16 noise)

−5 0 5 10 15 20

−4

−2

0

2

4

6

8

INPUT SNR (dB)

S
S

N
R

 G
A

IN
 (

d
B

) 

−5 0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

INPUT SNR (dB)

P
E

S
Q

 G
A

IN

−5 0 5 10 15 20
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

INPUT SNR (dB)

S
T

O
I 
G

A
IN

(d) SSNR (Train noise) (e) PESQ (Train noise) (f) STOI (Train noise)

−5 0 5 10 15 20

−4

−2

0

2

4

6

INPUT SNR (dB)

S
S

N
R

 G
A

IN
 (

d
B

) 

−5 0 5 10 15 20

0

0.1

0.2

0.3

INPUT SNR (dB)

P
E

S
Q

 G
A

IN

−5 0 5 10 15 20

−0.03

−0.02

−0.01

0

0.01

INPUT SNR (dB)

S
T

O
I 

G
A

IN

(g) SSNR (Street noise) (h) PESQ (Street noise) (i) STOI (Street noise)

Figure 1: Performance comparison of various algorithms for different noise types in terms of SSNR, PESQ, and STOI scores.

factorization method (BNMF), wherein one optimizes the MSE
of the clean speech spectral amplitude with the help of a dictio-
nary trained offline on clean speech [15]. Matlab implementa-
tions of WFIL and LSA are available in [27]. The implemen-
tations use the VAD proposed in [26]. For MPE-1-G/MPE-2-
G, we use the same VAD. For the GMM approach, a VAD is
not needed, since it is a pre-trained model. For the BNMF
implementation, we use the Matlab code provided online by
the authors [15]. The choice of WFIL and LSA for perfor-
mance benchmarking is motivated by the extensive comparison
reported in [27], which established conclusively that these re-
sult in higher speech quality and intelligibility than the compet-
ing techniques. The BNMF technique has been shown to be the
best among NMF based speech denoising approaches.

Three objective scores are computed for performance eval-
uation: (i) Segmental signal-to-noise-ratio (SSNR), calculated
by averaging the SNRs over short speech segments; (ii) Percep-
tual evaluation of speech quality (PESQ) [28], which is widely
used to measure the perceptual speech quality in narrowband

telephone networks, speech codecs, and denoised speech; and
(iii) Short-time objective intelligibility score (STOI), which has
been shown to be highly correlated with the intelligibility of the
denoised speech [29]. The scores are averaged over 30 differ-
ent speech files corresponding to 10 independent and randomly
selected noise realizations for each input SNR.

Figure 1 shows the performance comparison of the tech-
niques for F16, train, and street noise. We observe that for all
the noise types under consideration, MPE-1-GMM and MPE-
2-GMM exhibit a higher SSNR gain compared with the com-
peting algorithms (cf. Figures 1(a), 1(d), and 1(g)). Further,
in the case of F16 noise, and for other noise types with input
SNR greater than 5 dB, MPE-1-G exhibits a better denoising
performance in terms of SSNR. Among the proposed MPE es-
timators, the SSNR gain obtained using MPE-2-G turns out to
be the least. In terms of PESQ scores (cf. Figures 1(b), 1(e),
and 1(h)), we observe that, for all the noise types considered,
MPE-2-GMM leads to the best performance. For F16 noise,
MPE-1-G and MPE-2-G also result in fairly high PESQ scores.
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Figure 2: Spectrograms of the denoised speech obtained using different algorithms.

For input SNR exceeding 5 dB, MPE-1-G, MPE-1-GMM, and
MPE-2-GMM exhibit a denoising performance superior to their
competitors in terms of STOI (cf. Figures 1(c), 1(f), and 1(i)).

To summarize, MPE-2-GMM exhibits a better performance
compared with all the other techniques. In the case of street and
train noise, GMM-based MPE estimators show a superior de-
noising performance than their Gaussian counterparts. In the
case of F16 noise, the Gaussian model led to a better denoising.
This is probably because the F16 noise is relatively stationary
compared with street and train noise, and the adaptive variance
estimation using a VAD is reasonably accurate.

To demonstrate the time-frequency structure, distribution
of residual noise, and speech distortion, we show the spectro-
grams of the denoised, noisy, and clean speech signals in Figure
2 corresponding to the train noise. We observe that WFIL has a
higher residual noise than all the other algorithms. BNMF sup-
presses noise, especially in the silence regions, but it introduces
speech distortions in some regions (cf. Figure 2(c), high fre-
quency region (2.5 to 3.5 kHz) just after 3 s, highlighted using
a red rectangle). MPE-1-GMM and MPE-2-GMM yield supe-
rior noise suppression and less speech distortion. In the case
of MPE-1-G/MPE-1-GMM, a small amount of musical noise is
present, which is suppressed to some extent in MPE-2-G/MPE-
2-GMM, since by construction, MPE-2 incorporates temporal
smoothing while computing the point-wise shrinkage estimator.

4. Conclusions

We proposed a novel criterion for speech denoising based on the
probability of error. Our formalism does not place any statisti-
cal assumptions on the clean speech signal. Notwithstanding
its simplicity, the performance of the proposed denoiser turned
out to be competitive with the state-of-the-art techniques un-
der real-world noise conditions. Further, an implicit assump-
tion of the proposed framework is that the clean signal admits a
parsimonious representation in a chosen basis, which is true of
the speech signal in the DCT domain, and that the noise does
not, which makes the point-wise shrinkage a natural choice for
denoising. The proposed framework relies on modeling the
noise p.d.f., for which we develop Gaussian and GMM-based
approximations. The standard deviation of the Gaussian model
for noise is updated recursively using a VAD, whereas the pa-
rameters for the GMM are pre-trained. Updating the GMM pa-
rameters adaptively might lead to an improvement in the de-
noising performance under real-world noise conditions. Two
versions of point-wise shrinkage were considered, one instan-
taneous and the other involving a certain degree of temporal
smoothing, with the latter leading to a superior performance.
All the same, excessive smoothing might deteriorate the perfor-
mance and the optimal degree of smoothing to be incorporated
in the MPE framework must be ascertained.
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