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Abstract
A multi-resolution version of the gammachirp envelope distor-
tion index (mr-GEDI) is proposed for the intelligibility predic-
tion of noisy speech processed using speech enhancement algo-
rithms. The proposed model calculates the short-time signal-to-
distortion ratio in the temporal envelope modulation extracted
from the output of the gammachirp auditory filterbank. The pre-
dictions were compared with human subjective results for vari-
ous signal-to-noise ratio conditions with pink and babble noise.
The mr-GEDI predicts the intelligibility curves better than the
hearing-aid speech perception index (HASPI).
Index Terms: speech intelligibility, objective measure, speech
enhancement

1. Introduction
It is important to develop objective intelligibility and quality
measures for assistive listening devices, such as hearing aids
(HA) [1]. Although many noise reduction and speech enhance-
ment algorithms have been developed, their evaluation proce-
dure still rely on human listening tests. There is no de facto
standard objective measure for nonlinearly enhanced speech
sounds; however, several models have been proposed. These
models are commonly based on two approaches: correlation
and signal-to-noise ratio (SNR).

Taal et al. [2] proposed the short-time objective intelligibil-
ity (STOI) measure, which has often been used in recent evalu-
ations. The STOI is based on the cross-correlation between the
temporal envelopes of clean speech (S) and enhanced speech
(Ŝ) at the output of a 1/3-octave filterbank. The STOI is in-
tended to assess the intelligibility of speech processed via an
ideal time-frequency segregation (ITFS). It has been reported,
however, that the STOI was not successful at predicting the in-
telligibility of speech sounds enhanced by via Wiener filtering
[3] and a recent DNN-based enhancement algorithm [4].

Kates and Arehart [5] proposed the hearing-aid speech per-
ception index (HASPI) for hearing impaired (HI) and normal
hearing (NH) listeners. This measure is a combination of two
indices: (1) the coherence between the outputs of an auditory
filterbank for clean (S) and enhanced speech (Ŝ), and (2) the
cross-correlation between the temporal sequences of the cep-
stral coefficients of S and Ŝ. The HASPI is intended to assess
the intelligibility of speech processed via nonlinear frequency
compression and ITFS processing.

Jørgensen and Dau [6] proposed an SNR-based model,
which they refer to as the speech-based envelope power spec-
trum model (sEPSM). The sEPSM assumes that speech intelli-
gibility is related to the signal-to-noise ratio (SNR) in the speech
envelope [7] and calculates the ratio between the envelope pow-

ers of enhanced speech (Ŝ) and residual noise (Ñ ). This ratio
is referred to as SNRenv. The sEPSM was extended to a multi-
resolution version (mr-sEPSM) [8] in which the SNRenv is es-
timated in a temporal segment proportional to the period of the
modulation filter and is integrated over time to perform better
intelligibility estimations of speech affected by non-stationary
noise. The sEPSM and mr-sEPSM techniques require knowl-
edge of the residual noise (Ñ ), which is sometimes difficult to
estimate, particularly, when using Wiener-filter-based enhance-
ment algorithms.

Yamamoto et al. [3] proposed the gammachirp enve-
lope distortion index (GEDI), which is based on the signal-to-
distortion ratio (SDR) in the envelope domain, SDRenv. The
main idea behind the GEDI method is to calculate the distor-
tion between the temporal envelopes of the clean and enhanced
speech from the outputs of a gammachirp auditory filterbank
[9]. The method is based on the hypothesis that speech in-
telligibility becomes increasingly degraded as the temporal en-
velopes of the enhanced speech diverge from those of the clean
speech. This approach enables to calculate the ratio of the en-
velope power spectrum using the clean speech (S) as the ref-
erence signal instead of the residual noise (Ñ ). They demon-
strated that the GEDI successfully predicted the intelligibility
of speech sounds affected by additive pink noise. Their evalu-
ation included speech sounds enhanced via spectral subtraction
and Wiener filtering.

In this paper, we report on speech intelligibility experi-
ments extended with babble noise, which may be encountered
in everyday situations. We also extended the original GEDI
to a multi-resolution version (mr-GEDI), as suggested in the
paper on mr-sEPSM [8], to improve predictability under non-
stationary noise conditions. In fact, we found that the mr-GEDI
performed better than the GEDI in a test with babble noise. We
also make a comparison between the mr-GEDI and the HASPI
approaches, of which the latter is one of the most competitive
models, under the criterion of better prediction of human re-
sults.

2. Proposed model
We extended the original GEDI to a multi-resolution version
(mr-GEDI) which uses temporal frames that are dependent on
the modulation period used in the analysis. The main purpose
of this is to account for non-stationary noise conditions. Bab-
ble noise is less stationary than pink noise, which was used in
[3]. Moreover, this approach would be advantageous in every-
day situations with realistic noise. We explain the algorithm for
obtaining the mr-GEDI in the following sections. The main dif-
ferences between the GEDI and the mr-GEDI are the temporal
processing steps using IIR filters (2.3) and segmentation using
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Figure 1: Block diagram of the mr-GEDI.

different frame lengths (2.4).

2.1. Auditory filtering and envelope extraction

Figure 1 shows a block diagram of the multi-resolution GEDI.
The mr-GEDI uses a dynamic compressive gammachirp filter-
bank (dcGC-FB) [9] as a front-end. The temporal envelopes of
both enhanced speech (Ŝ) and clean speech (S) are calculated
from the output of the individual auditory filter. This is per-
formed by using the Hilbert transform and a low-pass filter with
a cutoff frequency of 150 Hz.

2.2. Calculation of envelope distortion

The absolute difference between the power envelopes of Ŝ and
S is calculated to extract a “temporal envelope distortion (eD)”
as:

eD,i(n) =
√
|{eS,i(n)}2 − {eŜ,i(n)}2|, (1)

where i{i|1 ≤ i ≤ 100} is the number of the dcGC-FB chan-
nel and n is the sample number of the temporal envelopes. Any
speech enhancement algorithm unavoidably causes distortions
on the estimated speech sounds relative to the original clean
speech. This is the case in both the frequency and temporal en-
velope domains. The working hypothesis in this study is that the
distortion in the temporal envelope domain (Eq. 1) is negatively
correlated with speech intelligibility [3].

2.3. IIR-based modulation filterbank

The temporal envelopes eS and the distortion eD are filtered us-
ing an IIR-based modulation filterbank which includes a third-
order low-pass modulation filter and eight second-order modu-
lation bandpass filters. The octave-frequency space, the range,
and the Q-value of the modulation filterbank used are the same
as in the mr-sEPSM study [8].

2.4. Segmentation and envelope power

The output of the j-th modulation filter channel, {j|1 ≤ j ≤
9}, is segmented into multi-resolution frames using a rectan-
gular window without overlap and is denoted as Ei,j(n). The
duration of the window is the inverse of the cut-off frequency
or the center frequency of the corresponding modulation filter
[8]. For example, when the modulation filters have their center
frequencies at 2 Hz, 4 Hz, and 8 Hz, the corresponding frame

durations are 500 ms, 250 ms, and 125 ms, respectively. This
frame processing enables us to analyze the components with
the optimal resolution. The power of each frame, Penv , is cal-
culated from the squared sum of each temporal output of the
modulation filterbank:

Penv,∗,i,j,t =
1

[eŜ,i]
2/2

[E∗,i,j,t(n)− E∗,i,j ]2, (2)

where the asterisk (*) represents components from either the
clean speech “S” or the distortion “D”. t{t|1 ≤ t ≤ T (j)}
is the frame index in the j-th modulation filter, and the bar in-
dicates average over time. The denominator eŜi

in Eq.2 repre-
sents the normalization factor obtained using the DC component
of the temporal envelope of the enhanced speech Ŝi. Penv,∗,i,j,t
was restricted to be greater than −30 dB (0.001 in linear terms)
as suggested in [8].

2.5. Calculation of SDRenv

The SDR in the temporal envelope domain (SDRenv) is calcu-
lated as the power ratio between the clean speech (Penv,S,i,j,t)
and the distortion (Penv,D,i,j,t). The individual SDRenv,j,t for
modulation filter channel j and frame index t is defined as the
ratio of the powers summed across dcGC-FB channel i, and can
be written as:

SDRenv,j,t =

∑100
i=1 Wi · Penv,S,i,j,t∑100
i=1 Wi · Penv,D,i,j,t

, (3)

Wi =
ERBN(1000)

ERBN(fi)
, (4)

whereWi is a weight function for normalizing the output power
of the auditory filterbank (dcGC-FB) based on the equivalent
rectangular bandwidth of NH listeners (ERBN) [10]. The total
SDRenv value is calculated as the root-mean-squared (RMS)
value after averaging over the frames, T (j):

SDRenv,j =
1

T (j)

T (j)∑

t=1

SDRenv,j,t, (5)

SDRenv =

√√√√
9∑

j=1

(
SDRenv,j

)2
. (6)

The following procedure is the same as that used in previous
models [3]. The SDRenv is converted into the sensitivity index
d′ of an “ideal observer” via the following equation:

d′ = k · (SDRenv)q, (7)
where k and q are constants to be determined in accordance
with experimental conditions. Speech intelligibility, Ipredict, in
percent correct is predicted from the value of d′ by assuming a
multiple-alternative forced choice (mAFC) model [11] in com-
bination with an unequal-variance Gaussian model [12], and
can be written as:

Ipredict(d
′) = Φ

(
d′ − µN√
σ2
S + σ2

N

)
, (8)

where Φ denotes the cumulative normal distribution. The values
of µN and σN are determined by the response-set size m, and
σS is a parameter related to the redundancy of the speech mate-
rial. The procedure for setting these parameters is described in
section 3.5.1.

3. Evaluation method
Listening experiments were conducted to evaluate the mr-GEDI
under babble noise conditions in addition to the pink noise con-
ditions previously reported in [13]. Model predictions were per-
formed for speech under both babble and noise conditions.
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3.1. Speech data

Speech sounds of Japanese four-mora words in a database
named the familiarity-controlled word lists 2007 (FW07) [14,
15] were used for subjective listening experiments and objec-
tive evaluations. Speech sounds of a male speaker (mis) were
obtained from the set with the lowest familiarity, which prevents
listeners from complementing the answer with their guesses.

3.2. Noisy speech with babble

A speech babble noise was generated from the corpus of sponta-
neous Japanese (CSJ) database [16, 17]. We mixed speech sig-
nals of 32 speakers after concatenating sentences into a single-
track sound. We extracted the babble noise from a random start
point before adding it to the speech sounds. The SNR condi-
tions ranged from −6 dB to +6 dB in 3-dB steps. Note that the
SNR conditions ranged from −6 dB to 3 dB under pink noise
conditions [13]. Sounds affected only by additive noise will
hereafter be referred to as “unprocessed” sounds.

3.3. Speech enhancement algorithms

We applied two speech enhancement algorithms to the “unpro-
cessed” sounds. The first one is a simple spectral subtraction
(SS) algorithm [18] for consistency with the method previously
used to evaluate the original sEPSM method [6]. The over-
subtraction factor, α, for the SS was fixed at 1.0 as a reference
condition for comparing with the results presented in [6]. This
method will hereafter be referred to as “SS(1.0)”. The second
one is a state-of-the-art noise-suppression algorithm based on a
Wiener filter with a pre-trained speech model (WFPSM) [19].
It is possible to control the amount of residual noise with the
parameter ε {ε|0 ≤ ε ≤ 1} of the Wiener gain shown in Eq.
18 in [20]. Residual noise increases as the value of ε increases.
WFPSM with ε values of 0, 0.1, and 0.2 will be referred to as
“WF

(0.0)
PSM,” “WF

(0.1)
PSM,” and “WF

(0.2)
PSM,” respectively. We used

“WF
(0.0)
PSM” and “WF

(0.2)
PSM” in the tests under babble noise con-

ditions because of restrictions on the experimental condition,
while all the “WF

(0.0)
PSM,” “WF

(0.1)
PSM,” and “WF

(0.2)
PSM” models

were used for the tests under pink noise conditions [13].

3.4. Subjective experiments

Fourteen (eight male and six female) NH listeners aged between
19 and 24 participated in the experiments with babble noise con-
ditions. Their native language is Japanese and had a hearing
level (HL) of less than 20 dB between 125–8000 Hz. They par-
ticipated in the experiments after providing informed consent.

The listeners were instructed to write down the words that
they heard using “hiragana”, which roughly correspond to the
Japanese morae or consonant-vowel syllables. The total num-
ber of presented stimuli was 400 words, consisting of a combi-
nation of four signal processing conditions and five SNR condi-
tions with 20 words per condition. Note that the words for each
condition corresponded to a set of 20 words in the FW07. Each
subject listened to a different word set, which was assigned ran-
domly to avoid bias caused by word difficulty. Thus, there were
fourteen sets of stimulus sounds. The percentage of correctly
identified words was used as the score for intelligibility.

The sounds were presented diotically via a digital-to-analog
(DA) converter (OPPO, HA-1) over headphones (OPPO, PM-
1) at a sampling frequency of 48 kHz after up-sampling from
16 kHz. The stimulus sound levels were 63 dB in LAeq. We
carried out the experiments in a sound-attenuated room with a
background level of approximately 26 dB in LAeq.

Table 1: Coefficient values for mr-GEDI and HASPI under bab-
ble (a) and pink (b) noise condition. Columns show the param-
eters and RMS errors (in percent points) after optimization.

mr-GEDI HASPI
k σs error B C Ahigh error

(a) 1.53 0.64 11.21 −61.36 −22.15 93.87 2.35
(b) 1.50 1.64 3.42 −10.88 4.04 13.32 0.60

3.5. Objective predictions

Model evaluations were performed for the prediction of human
results under the conditions arising from the use of speech en-
hancement algorithms and babble and pink noise conditions.
The HASPI model was selected as a competing model because
it performed better than other models in a previous study [13].

The set of model parameters depends on the experimental
conditions, including the speech material used. A number of
these parameters were set manually and the rest was determined
using the least-squared-error (LSE) method as described in sec-
tion 3.5.3.

3.5.1. mr-GEDI

There are four parameters, namely k, q, σS , and m, in Eqs. 7
and 8. We set q = 0.5, as in [6], and m = 20000, as described
in [13], for consistency with the previous studies. We confirmed
that predictions were not very sensitive to these parameters. The
values of the remaining parameters, k and σS , were determined
using the LSE method described in section 3.5.3 and are shown
in Table 1.

3.5.2. HASPI

Speech intelligibility using the HASPI is derived by using a lo-
gistic function, Ipredict = 100/{1 + exp(−p)}, as in Eqs. 1
and 7 in [5]. The parameter p is defined as a linear combination
of feature values related to the cepstral correlations (c) and the
three levels of auditory coherence (alow, amid, and ahigh) with
a bias component and can be calculated as:

p = B + C · c+ 0 · alow + 0 · amid +Ahigh · ahigh. (9)

The coefficients for this feature are denoted with capital letters
as B, C, and A. Note that coefficients Alow and Amid have
been set to zero as described in [5]. The remaining coefficients,
namely B, C, and Ahigh, were determined via the LSE method
described in section 3.5.3 and are shown in Table 1 1 . The co-
efficient values were entirely different between the babble and
pink conditions. This implies that it would be difficult to deter-
mine a proper set of coefficients for unknown conditions before
performing subjective experiments.

3.5.3. Coefficient determination by the LSE

The coefficients should be determined optimally to predict hu-
man results, which vary largely in accordance with the experi-
mental conditions. The procedure should be clearly defined to
make a fair comparison. In this study, we determined the coef-
ficients so that the predicted scores were closest to the human
scores for the “unprocessed” conditions. An LSE algorithm was
used to minimize the error as follows:

Ψ = argimin
Ψ

L∑

l=1

(
Ihuman(l)− Ipredict(l)

)2 (10)

1The coefficient values for the pink noise condition are different
from those reported in [3] because the input signal levels Ŝ and S were
corrected based on the HASPI manual.
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Figure 2: Results of the subjective experiments (a), the objective predictions obtained via the mr-GEDI (b) and the HASPI (c), and the
SRTs for the tests under babble noise conditions.
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Figure 3: Results of the subjective experiments (a), the objective predictions obtained via the mr-GEDI (b) and the HASPI (c), and the
SRTs (d) for the tests under pink noise conditions.

where Ψ is a set of coefficients and l is the index number of
listeners and SNRs. The RMS errors after convergence are also
listed in Table 1. Each model was fitted 100 times, using differ-
ent initial values for the original coefficients reported in [5] and
[13], chosen randomly within a range of ±95%. However, the
resulting values were always the same as those listed in Table 1
and, therefore, are the best in the LSE framework.

The RMS errors of the mr-GEDI approach were much
greater than those of the HASPI approach. This is mainly be-
cause the mr-GEDI, which originates from the sEPSM [6], has
strong constraints on speech material and ideal listeners. This
also implies that it would be better to improve the SNRenv in
Eq. 8. In contrast, the HASPI approach uses a simple logistic
function without any constraint and can be fitted to any psycho-
metric function with very small errors. This is not necessarily
an advantage, as shown in next section.

4. Results
4.1. Babble noise conditions
Figure 2 shows the results obtained under babble noise condi-
tions. The left three panels show the average and standard devi-
ation of the percent-correct words as a function of speech SNR
for human listeners (a), and the predictions obtained via the pro-
posed mr-GEDI (b) and HASPI (c) methods. The speech en-
hancement algorithms were based on three conditions: (SS(1.0),
WF

(0.0)
PSM, and WF

(0.2)
PSM). The “unprocessed” condition is also

shown as a reference. Fourteen noisy speech sets, as described
in section 3.4, were used for both the subjective experiments
and the objective predictions.

In the human results (Fig. 2(a)), the standard deviations
were approximately 10%. Multiple comparison analyses
(Tukey-Kramer HSD test, α = 0.05) indicated that the
speech intelligibility scores of the enhanced speech processed
by SS(1.0) were significantly lower than those for unprocessed
speech. There were no significant differences between the other
algorithms and the unprocessed speech.

The speech intelligibility curves predicted using the mr-
GEDI (Fig.2(b)) were of smaller values than the human results,
although they were of similar order. However, the speech intel-
ligibility under SS(1.0) conditions was much smaller than that
for human results and mr-GEDI predictions.

Figure 2(d) shows the speech reception thresholds (SRTs) at
50% of speech intelligibility under each condition, and the val-
ues were calculated by fitting the prediction results to the human
results with a cumulative Gaussian function. For WF

(0.0)
PSM, and

WF
(0.2)
PSM, the SRTs of the mr-GEDI and the HASPI were almost

the same. The SRT values for SS(1.0) predicted by the HASPI
were higher than those of human results and those predicted by
the mr-GEDI.

4.2. Pink noise conditions

Figure 3 shows the results obtained under pink noise condi-
tions. The left three panels show the percent correct values of
word recognition for the human subjective results reported pre-
viously (a) [3] and the predictions obtained using the proposed
mr-GEDI (b) and HASPI (c) methods. The predictions obtained
using the mr-GEDI shown in Fig. 3(b) were in sufficiently good
agreement with the human results shown in Fig. 3(a). More-
over, the differences between the speech enhancement tech-
niques are smaller than those observed using the GEDI as re-
ported in Fig. 4(b) of [3]. Fig. 3(c) shows that the curves for
WF

(0.0)
PSM and WF

(0.1)
PSM are much higher when using the HASPI

than those for human results and the mr-GEDI. These results are
also summarized in the SRT values shown in Figure 3(d). As a
result, the mr-GEDI approach predicts human results better than
the HASPI approach.

5. Conclusions
We proposed a multi-resolution version of the gammachirp en-
velope distortion index (mr-GEDI) for making intelligibility
predictions of noisy speech enhanced via a Wiener filter and
spectral subtraction. The predictions were compared with hu-
man subjective results for various signal-to-noise ratio (SNR)
conditions with additive pink and babble noise. The results
showed the mr-GEDI predicted the intelligibility curves better
than the HASPI.
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