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Abstract 

The acoustic quality of exemplar-based voice conversion (VC) 
degrades whenever the phoneme labels of the selected 
exemplars do not match the phonetic content of the frame being 
represented. To address this issue, we propose a Phoneme-
Selective Objective Function (PSOF) that promotes a sparse 
representation of each speech frame with exemplars from a few 
phoneme classes. Namely, PSOF enforces group sparsity on the 
representation, where each group corresponds to a phoneme 
class. The sparse representation for exemplars within a 
phoneme class tends to activate or suppress simultaneously 
using the proposed objective function. We conducted two sets 
of experiments on the ARCTIC corpus to evaluate the proposed 
method. First, we evaluated the ability of PSOF to reduce 
phoneme mismatches. Then, we assessed its performance on a 
VC task and compared it against three baseline methods from 
previous studies. Results from objective measurements and 
subjective listening tests show that the proposed method 
effectively reduces phoneme mismatches and significantly 
improves VC acoustic quality while retaining the voice identity 
of the target speaker. 

Index Terms: voice conversion, sparse representation, 
exemplar-based methods 

1. Introduction 

Voice conversion (VC) seeks to convert an utterance from a 
source speaker to make it sound as if a target speaker produced 
it. VC finds applications in many real-world scenarios such as 
personalized text-to-speech synthesis [1], speaker spoofing [2] 
and pronunciation training [3]. Several VC frameworks have 
been proposed; among them, statistical parametric methods 
based on Gaussian Mixture Models (GMM) [4, 5] are widely 
used and can achieve convincing performance. Recently, 
methods based on sparse representations have become another 
promising approach. This exemplar-based VC framework 
constructs dictionaries of source and target exemplars selected 
from a parallel training corpus. At runtime, a source spectrum 
is represented as a sparse non-negative combination of 
exemplars in the source dictionary, and the target spectrum is 
generated by multiplying the sparse representation with the 
target dictionary. 

Exemplar-based VC methods have several advantages: they 
require much smaller training corpora [6], and they are more 
robust to noisy speech than GMMs [7]. However, exemplar-
based methods lead to phoneme mismatches since the phoneme 
labels of the selected exemplars may not match the phonetic 
content of the frame being represented. These phoneme 
mismatches tend to be speaker-dependent, which reduces the 
similarity between the source and target sparse representations 
[8, 9] and introduces distortions in the converted speech. 

Moreover, this phoneme-mismatch problem becomes more 
severe as the size of the dictionary increases [8, 9]. 

In this paper, we address the phoneme-mismatch problem 
by improving the sparse representation. Namely, we jointly 
optimize the standard objective function (Mean-Square Error 
with ��  constraint) combined with a Phoneme-Selective 
Objective Function (PSOF) based on the  ��,� norm [10] . The 

��,� norm enforces group sparsity, and therefore each speech 
frame tends to be represented using exemplars from a few 
phoneme classes. Based on PSOF, we propose a modified 
exemplar-based VC framework (VC-PSOF) that operates as 
shown in Figure 1 and Figure 2.  Namely, during training we 
construct a phoneme-categorized exemplar dictionary from 
labeled speech data. Then, at runtime, we compute the sparse 
representation of the source spectrum by jointly optimizing the 
standard objective function and the PSOF. Experimental results 
show that our proposed method effectively reduces the 
phoneme mismatches and significantly improves VC acoustic 
quality while capturing the voice identity of the target speaker. 

Relation to prior work. Several previous studies have 
examined the phoneme-mismatch issue. In prior work [11], we 
used a compact dictionary with a single exemplar per phoneme 
class. Although mismatches were effectively reduced, the 
converted speech was lacking in spectral details since no 
phoneme variations were considered in the exemplar set. Aihara 
et al. [8] and Berrak Sisman et al. [12] solved this mismatch 
problem by incorporating phoneme information into the 
exemplar dictionary. They categorized exemplars into sub-
dictionaries according to their phoneme labels, and then 
selected different sub-dictionaries to represent the speech 
frames using a sub-dictionary selection procedure [8] or 
phoneme labels at runtime [12]. The sub-dictionary selection 
procedure requires extra computations, and acquiring phoneme 
labels at runtime is impractical. In contrast with their work, we 
use PSOF to implicitly encourage the sparse coding algorithm 
to represent a source speech frame using exemplars from as few 
phoneme classes as possible–at no extra computational cost. In 
practice, the PSOF-selected phoneme classes are similar to the 
ground-truth phoneme labels. 

2. Literature review 

The most common approaches for transforming spectral 
features in VC are based on statistical parametric models. 
Within these models, GMMs and neural networks have been 
explored the most. GMM-based methods [4, 5] model the joint 
distribution of source and target short-time spectra using a 
GMM. Then, the converted spectral features are estimated by 
mapping source spectral features to the target space. In neural-
network-based methods [13, 14], various architectures such as 
restricted Boltzmann machines and stacked autoencoders have 
been used for transforming spectral features directly. Other 
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statistical models including partial least squares [15] and 
HMMs [16] have also shown success in VC. 

Alternatively, nonparametric exemplar-based methods 
have been increasingly popular in recent years. Takashima et al. 
[7] first applied exemplar-based sparse representation to solve 
the VC problem in noisy environments. Wu et al. [6] improved 
the original sparse representation by using both high-resolution 
and low-resolution features to capture spectral details and 
enforce temporal continuity. Aihara et al. [8, 9] and Berrak 
Sisman et al. [12] incorporated phoneme information to solve 
the phoneme-mismatch problem. Liberatore et al. [11, 17] 
addressed the same issue by constructing compact exemplar 
dictionaries with a single centroid per phoneme. 

3. Conventional framework for exemplar-
based VC 

In conventional exemplar-based VC frameworks, a source 
exemplar dictionary �� ∈ ℝ�×�  and a time-aligned target 
exemplar dictionary �� ∈ ℝ�×�  are first selected from the 
source and target speakers, where � is the number of exemplars 
and each exemplar is a �-dimensional spectral feature vector. 
Then a source utterance � ∈ ℝ�×�  with �  frames can be 
represented as: 

� ≅ ��� (1) 

where � ∈ ℝ�×� is a sparse non-negative weight matrix (i.e. a 
sparse representation). Given �  and �� , �  can be 
approximated by minimizing the objective function in eq. (2) 
through sparse coding, 

argmin
�

�(�, ���) +  �‖�‖� , �. �.  � ≥ 0 (2) 

where �(∙) is a distance metric, typically the KL-divergence or 
the Euclidean distance, and the �� norm term is often included 
to enforce sparsity in � . To generate a target utterance �� ∈
ℝ�×� , we multiply the sparse representation of the source 
utterance with the target exemplar dictionary as: 

�� = ��� (3) 

4. Promoting phoneme selectivity in 
exemplar-based VC 

As described before, the standard objective function in eq. (2) 
can lead to phoneme mismatches [8, 9]. To address this issue, 
we propose a Phoneme-Selective Objective Function (PSOF) 
based on the ��,� norm [10]. 

4.1. Phoneme-selective objective function 

We define phoneme selectivity as the property where each 
spectrum frame is represented with exemplars from as few 

phoneme classes as possible. In other words, given a source 
spectrum and a source exemplar dictionary, the estimated 
weight matrix should be group sparse: for each column, only 
the weights within a few phoneme classes should be activated. 
In practice, the most common mathematical tool to enforce 
group sparsity is the  ��,�  norm [10]. Therefore, we define a 
Phoneme-Selective Objective Function (PSOF) Ψ(�) as,  

 Ψ(�) =  � � �� ���
�

�

���,�∈��

�

���

�

���
(4) 

where ��� denotes the (�, �)-th element of the weight matrix �, 

� denotes the number of phoneme groups, �� represents the �-
th phoneme group in the dictionary, and � and � are as defined 
in Section 3.  By minimizing PSOF, we force the weights within 
a phoneme class to be activated or suppressed at the same time, 
and therefore we achieve group sparsity in the weight matrix. 

To encourage phoneme selectivity in the sparse coding 
algorithm, we jointly minimize PSOF as, 

argmin
�

�(�, ���) + �‖�‖� + �Ψ(�) , �. �.  � ≥ 0 (5) 

where � is a penalty term for the proposed PSOF. 

Since eq. (5) is convex, sparse coding algorithms such as 
Non-negative Matrix Factorization (NMF) [18] and Fast 
Iterative Shrinkage-Thresholding (FISTA) [19] can still be used 
to optimize it. 

4.2. Phoneme-categorized exemplar dictionary 

Enforcing group sparsity requires exemplars to be categorized 
into phoneme groups. To achieve this, we construct phoneme-
categorized dictionaries similarly as in [8, 12]. Given � 
phonemes, source and target dictionaries �� and �� are further 
divided into �  sub-dictionaries. For each sub-dictionary, we 
select a number of speech frames according to their phoneme 
labels, and then use hierarchical clustering [20] to find � 
cluster centroids, which then become � exemplars. Formally, 
�� and �� can be expressed as, 

�� =  [��
�, ��

�, … , ��
�] (6) 

�� =  [��
�, ��

�, … , ��
�] (7) 

where ��
� ∈ ℝ�×� and ��

� ∈ ℝ�×�denote the source and target 
sub-dictionaries of the �-th phoneme, respectively. In practice, 
the phoneme labels of speech data are acquired from either 
force alignment or ASR. Figure 1 shows the process of 
constructing a phoneme-categorized exemplar dictionary. 

4.3. Voice conversion based on PSOF 

In summary, the workflow of the VC framework based on 
PSOF is as follows. During training, we construct source and 
target phoneme-categorized exemplar dictionaries from a 
labeled and time-aligned parallel speech corpus. During testing, 

Figure 1: Training phase of VC-PSOF. 

  
Figure 2: Testing phase of VC-PSOF. 
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we compute the sparse representation of a source utterance by 
optimizing the objective function in eq. (5). Then, we combine 
the source sparse representation with the target exemplars and 
generate the converted target utterance. Figure 1 and Figure 2 
illustrate the overall process. 

5. Experimental setup 

To evaluate the proposed VC framework, we conducted 
experiments on four speakers from the ARCTIC [21] corpus: 
two male speakers (BDL, RMS) and two female speakers (SLT, 
CLB). Parallel utterances from these four speakers and the 
corresponding phonetic transcriptions were used in the 
experiments. For each speaker, we selected three separate sets: 
a training set with 20 utterances, a development set with 20 
utterances, and a testing set with 50 utterances1. Our choice of 
using a small training set was motivated by applications where 
collecting a large corpus is impractical (e.g., pronunciation 
training [22, 23]); these applications are where exemplar-based 
methods are most beneficial. Four VC pairs were considered for 
the experiments: BDL to RMS (m-m), RMS to SLT (m-f), SLT 
to CLB (f-f), and CLB to BDL (f-m). In what follows, all the 
results are averaged over these four VC pairs.  

For each utterance, we used STRAIGHT [24] to extract a 
1,025-dimensional spectral envelope, fundamental frequency 
(F0) and aperiodicity. We compressed the STRAIGHT 
spectrum using 24 MFCCs (25 Mel-filterbanks, 25 coefficients, 
removing MFCC�, which is energy). To construct the phoneme-
categorized exemplar dictionary, we assigned each frame of 
MFCCs a phoneme label based on the ARCTIC transcription. 
As ARCTIC includes 41 phonemes, we set � =  41. No 
contextual dynamic features were used. Source and target 
utterances were time-aligned by dynamic time warping [25]. 

We used the SPAMS sparse coding toolbox [26, 27] to 
solve for eq. (5). As in prior work [11], we used the Euclidean 
Distance (i.e., Frobenius norm) �(�, ���) =  ‖� − ���‖�

�  as 
the distance metric. Based on preliminary experiments, we set 
�  and �  to 0.001 and 0.05, respectively. In addition, we 
normalized the source F0 to match the target space using log-
scale mean and variance normalization [5]. Finally, we 

                                                                 
 
1  Utterances for each set were selected using a maximum entropy 
criterion to ensure good phonetic balance. 

estimated the converted spectral envelope using converted 
MFCCs, and we synthesized the converted speech with 
transformed spectral envelope, normalized F0 and source 
aperiodicity. 

6. Experiments 

We set up two sets of experiments. In the first set, we evaluated 
the effectiveness of PSOF in reducing phoneme mismatches. In 
the second set, we compared the VC performance of the 
proposed method with three baseline methods. 

6.1. Effectiveness of phoneme-selective objective function 

To evaluate the effectiveness of the PSOF in reducing phoneme 
mismatches, we compared the VC-PSOF framework against a 
baseline system. The baseline system was the same as our 
approach for constructing the exemplar dictionary, but it 
optimized the objective function in eq. (2). We first visualize 
the sparse representation of both systems (Figure 3). In a second 
experiment, we evaluated the severity of phoneme mismatches. 
Lastly, we examine the Mel-Cepstral Distortion (MCD) [28] to 
determine if the reduction of phoneme mismatches would 
improve VC performance. In each experiment, we tested two 
systems with various numbers of exemplars in dictionaries. For 
each sub-dictionary, we set the number of exemplars to � = 
10, 20, 40, 60, 80 and 100.  

Visualization. Figure 3 shows the sparse representations of 
the word “never” from BDL (only showing the sub-dictionaries 
that were activated. In the baseline system (Figure 3 (b)), a 
speech frame can be represented by exemplars from arbitrary 
phoneme labels. In contrast, by jointly optimizing PSOF 
(Figure 3 (a)), the sparse coding objective is biased to use 
exemplars from the closest phonemes to represent a speech 
frame, reducing the number of phoneme mismatches. 
Additionally, as shown in Figure 3 (c) and Figure 3 (d), VC-
PSOF usually represents a speech frame using fewer phoneme 
classes (~2), while the baseline system tends to represent a 
frame using ~4-6 phonemes. For example, speech frames for 
/EH/ are represented by exemplars from four phonemes (/AE/, 
/EH/, /R/, and /W/) in the baseline system, but only by two 
phonemes (/EH/ and /AH/) when using PSOF. In cases where 
PSOF is unable to represent frames using exactly one phoneme 
class, it tends to choose very similar additional phonemes (e.g., 
/EH/ and /AH/ are both central vowels).   

Mismatch Severity. Given that phoneme mismatches 
reduce the similarity between source and target weights [8, 9], 
we use the dissimilarity between the source and target sparse 
representations of time-aligned parallel utterances to measure 

 
Figure 3: Visualization of sparse representations (� = 100) 
for the word ‘never’: (a) VC-PSOF, (b) Baseline. The x-axis 

values are the transcriptions of the word, and the y-axis values 
are the phonemes of exemplars in phoneme-categorized sub-

dictionary. (c) and (d) are the number of phoneme classes that 
were used in the sparse representations.  

 
Figure 4: (a) Mismatching severity ratio. (b) Average 

MCD of baseline and VC-PSOF. 
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the mismatch severity, defined as, 

�������ℎ �������� =
1

�
‖�� − ��‖� (8) 

where �� ∈  ��×�  and �� ∈  ��×�  are the source and target 
sparse representations computed from time-aligned parallel 
utterances, and � is the number of frames. Results are shown in 
Figure 4 (a). The mismatch severity of VC-PSOF is always 
lower than that of the baseline, which indicates that VC-PSOF 
always helps to reduce the phoneme mismatches.  

Mel-Cepstral Distortion (MCD). We also measured the 
MCD of the converted speech and the time-aligned target 
speech. Results are shown in Figure 4 (b). VC-PSOF always 
achieves lower MCD than the baseline, regardless of the 
number of exemplars. The average improvement in MCD of 
VC-PSOF with respect to the baseline is 0.1. This result 
indicates that the reduction of phoneme mismatches helps to 
improve VC performance. 

6.2. Performance on voice conversion 

We evaluated the VC-PSOF performance on a VC task through 
both objective and subjective experiments. In these 
experiments, we set the number of exemplars for each phoneme 
to 100 (4,100 in total). We also compared our methods against 
three baseline methods from previous studies: Phoneme-
Categorized Dictionary (PCD) [8], Joint Non-negative Matrix 
Factorization (JNMF) [6], and GMM [4]. PCD shares the notion 
of phoneme-categorized exemplar dictionary as our proposed 
work, but at run-time it uses a selection procedure to explicitly 
select which sub-dictionaries to use and then computes the 
sparse representation on the selected sub-dictionaries using eq. 
(2). JNMF is another exemplar-based VC method. During 
training, it randomly selects exemplars from parallel utterances 
for use as an exemplar dictionary; at runtime, it computes the 
sparse representation using eq. (2) on this dictionary. We used 
the same number of exemplars in PCD and JNMF as VC-PSOF 
to guarantee a fair comparison. The GMM based method in [4] 
is one of the most widely used parametric models for VC. We 
did not use MLPG [5] in our GMM conversion, as it does not 
converge well under such a small training set. We set the 
number of mixtures in GMM to 32, as suggested in [5].  

6.2.1. Objective evaluation 

We evaluated the four systems objectively by computing the 
MCD of the converted speech and the time-aligned target 
speech. Figure 5 (a) summarizes the results. VC-PSOF 
outperforms PCD and JNMF significantly, and also achieves 
marginally better performance than GMM. 

6.2.2. Subjective evaluation 

We conducted listening tests on Amazon Mechanical Turk to 
evaluate the four systems subjectively. Following previous 
studies [29, 30], we measured the acoustic quality with a 5-

point Mean Opinion Score (MOS) test and the speaker identity 
with a Voice Similarity Score (VSS) test ranging from -7 
(definitely different speakers) to +7 (definitely the same 
speaker).  

Mean Opinion Score. Twenty-five participants rated 80 
utterances from four VC systems: 20 utterances per system, 5 
utterances per speaker pair. Figure 5 (b) shows the MOS results 
with 95% confidence intervals. With a limited number of 
training utterances, the three exemplar-based methods 
outperform GMM, in agreement with prior studies showing that 
exemplar-based methods require less training data to achieve 
reasonable performance [6]. VC-PSOF obtained a 3.23 MOS, 
which is higher than PCD, JNMF, and GMM with statistical 
significance (� ≪ 0.001 in all cases).  

Voice Similarity Score. Twenty-two participants rated 160 
utterance pairs: 40 pairs (20 VC-source and 20 VC-target pairs) 
for each system and 10 pairs (5 VC-source and 5 VC-target 
pairs) for each speaker pair. For each utterance pair, participants 
were required to decide whether the two utterances were from 
the same speaker, and then rate their confidence in the decision 
on a 7-point scale. Following [29], VSS is computed by 
collapsing the above two fields into a 14-point scale. As shown 
in Figure 6, participants were “quite confident” that (1) VC-
PSOF utterances and the source utterances were from different 
speakers (VSS: -5.09); and that (2) VC-PSOF utterances and 
the target utterances were from the same speaker (VSS: 3.08). 
In addition, we found no statistically significant differences in 
VSS on the four systems (VC-source VSS, � ≫ 0.05 ; VC-
target VSS, � ≫ 0.05). Thus, these results indicate that VC-
PSOF improves the acoustic quality of the converted speech 
significantly (as reflected in the MOS test) without sacrificing 
the identity of the converted speech. 

7. Conclusion and future work 

In this paper, we proposed a Phoneme-Selective Objective 
Function based on the ��,� norm. By jointly optimizing PSOF, 
we reduced phoneme mismatches in exemplar-based voice 
conversion and improved the acoustic quality of the voice 
conversions. We conducted two sets of experiments to validate 
the PSOF. Objective and subjective test results showed that the 
proposed method effectively reduced phoneme mismatches and 
significantly improved VC acoustic quality while capturing the 
voice identity of the target speaker. 

In the current VC-PSOF method, the phoneme-categorized 
exemplar dictionaries are selected from labeled training data. 
Future work will focus on using dictionary learning to learn the 
phoneme-categorized exemplar dictionaries from the training 
data without using phoneme labels. 
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Figure 5: (a) Average MCD of four systems. (b) Acoustic 

quality results with 95% confidence intervals. Figure 6: Speaker identity results (vc-src: VSS between VC and 
source speaker. vc-tgt: VSS between VC and target speaker). 
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