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Abstract 

The fundamental frequency and the spectrum parameters of 
the speech are correlated thus one of their learned mapping 
from the linguistic features can be leveraged to help determine 
the other. The conventional methods treated all the acoustic 
features as one stream for acoustic modeling. And the multi-
task learning methods were applied to acoustic modeling with 
several targets in a global cost function. To improve the 
accuracy of the acoustic model, the progressive deep neural 
networks (PDNN) is applied for acoustic modeling in 
statistical parametric speech synthesis (SPSS) in our method. 
Each type of the acoustic features is modeled in different sub-
networks with its own cost function and the knowledge 
transfers through lateral connections. Each sub-network in the 
PDNN can be trained step by step to reach its own optimum. 
Experiments are conducted to compare the proposed PDNN-
based SPSS system with the standard DNN methods. The 
multi-task learning (MTL) method is also applied to the 
structure of PDNN and DNN as the contrast experiment of the 
transfer learning. The computational complexity, prediction 
sequences and quantity of hierarchies of the PDNN are 
investigated. Both objective and subjective experimental 
results demonstrate the effectiveness of the proposed 
technique. 

Index Terms: speech synthesis, progressive neural networks, 
acoustic modeling, transfer learning 

1. Introduction 

Artificial speech synthesis, which is known as text-to-speech 
(TTS), has two domains. One domain is unit-selection and 
concatenative speech synthesis, which need large-scale speech 
corpora to achieve good quality [1-6]. Another domain is the 
statistical parametric speech synthesis (SPSS). Learning the 
mapping from the abstract linguistic features to acoustic 
parameters is one of its central tasks [7]. 

Recently, end-to-end SPSS methods have been proposed 
and achieved quite good results [8-11]. However, the end-to-
end methods still need more delicate works in computational 
efficiency and robustness. On the contrary，the conventional 
SPSS methods, which have four pipelines including text 
analysis, prosody prediction, acoustic model and vocoder, are 
more robust and have small footprints. The application area of 
the SPSS is wide now. 

The accuracy of the acoustic model affects the quality of 
synthetic speech. Early SPSS methods normally combined all 

the acoustic features (line spectral pair (LSP), fundamental 
frequency (F0), voiced/unvoiced (U/V), etc) to one features 
vector. For instance, SPSS based on the hidden Markov 
models (HMMs) used the decision tree to cluster the phone 
state [12]. Then, the deep belief networks (DBN) [13, 14] and 
deep neural networks (DNN) [15] were applied for the 
acoustic model. To enlarge the receptive field of speech, 
recurrent neural networks (RNN) [16] and its variant 
bidirectional long short term memory (BLSTM) [17] were 
applied to build the sequence mapping between linguistic 
features and acoustic features. However, the models of the 
above methods tended to learn the high-dimension spectral 
features and to ignore the low-dimension features like F0. The 
correlation between spectral features and F0 features was 
ignored in the training process. 

To handle these problems, multi-task learning (MTL) 
methods [18, 19] were adopted. A combined weighted cost 
function was defined to balance the errors from the generation 
of F0 and spectrum in the training process.  A structured 
output layer (SOL) [20] was applied to generate the F0 and 
spectral parameters separately. The above MTL methods 
separated the prediction of the F0 and the spectrum by 
algorithm and network structure. However, we still need to 
adjust the weights of each sub-target cost manually. And we 
have no controls on the parameters distribution ratio of the 
network for each sub-task.  The networks could not fully 
concentrate on the sub-task, because the train criterion is to 
minimize the combined global weighted cost function.  

In this paper, we investigate into modeling the correlation 
between the F0 and the spectrum by the transfer learning 
methods. One hypothesis that we make is that one of learned 
mappings from the linguistic features to the acoustic features 
can be transferred to another mapping learning process, which 
could improve the accuracy of the predicted acoustic features. 
However, the conventional pre-training and fine-tuning (PT/ 
FT) method had very limited contribution because the sample 
size of the F0 and spectrum were equal and the model trained 
previously would be forgotten by epochs of training. On the 
contrary, we apply the transfer learning based progressive 
deep neural network (PDNN) with a sharing weights strategy 
to model the acoustic features (U/V, LSP, F0) step by step, 
which is a more thorough way to separate the predictions of 
F0 and spectrum. We investigate transfer learning between 
three types of acoustic features: U/V, F0, and LSP.  In all 
cases, we investigate five methods: (1) DNN (2) DNN with 
MTL method (3) PDNN (4) PDNN with MTL method (5) 
PDNN with PT/FT. Furthermore, we also investigate 
prediction sequences and quantity of hierarchies of the PDNN 
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on performance of the SPSS system. The computational 
complexity of the PDNN method is also discussed. 

The rest of the paper is organized as follows: Section 2 
proposes the PDNN framework for SPSS. The MTL methods 
are also included. Section 3 presents the experiments. The 
conclusions and future work are discussed in Section 4. 

2. Methods  

The production of speech is the cooperation of vocal folds and 
articulators [21]. In SPSS, the F0 parameters represent the 
state of vocal folds while the spectral parameters relate to 
articulators [22, 23]. The PDNN framework for SPSS is 
designed to model the correlation of F0 and spectrum by 
transfer learning method. Another MTL method is also 
introduced in this section. 

2.1. Progressive neural networks 

Progressive neural networks (ProgNets) [24] were first 
proposed by Google for the reinforcement learning tasks. 
ProgNets trained a new task by freezing the previous trained 
tasks. Compared with the conventional transfer learning 
methods that use the learned parameters as initial parameters, 
the ProgNets use the following strategies: 

 Firstly, all the parameters of the old model are frozen 
when the new task begins.  

 Secondly, the new model is initialized randomly.  

 Thirdly, lateral connections are built between the new 
model and the frozen old model.  

 Fourthly, the parameters of the new model is learned 
through backpropagation. 

2.2. PDNN Framework for SPSS 

The PDNN framework with 3 columns (3 colors) for SPSS is 
shown in Figure 1. The first task starts with a single column 
(green in the Figure 1): A deep neural network having 5 layers 

with hidden activations ℎ�
(�)

∈ ��� , with ��  the number of 

units at layer i ≤ 5  ,and parameters Θ(�)  trained to 
convergence.  

When switching to a second task, the parameters Θ(�) are 
“frozen” and a new column (yellow in the Figure 1) with 

parameters Θ(�)  is instantiated with random initialization, 

where layer ℎ�
(�)

 receives input from both  ℎ���
(�)

 and ℎ���
(�)

 via 
lateral connections. This generalizes to K tasks as follows:  

ℎ�
(�)

= � ���
(�)
ℎ���
(�)

+ ∑ ��
(�:�)

ℎ���
(�)

��� + ��
(�)
�     (1) 

where ��
(�)

∈ ���×����  is the weight matrix of layer i of 

column � , ��
(�:�)

∈ ���∗��  are the lateral connections from 

layer � − 1 of column � , to layer �  of column � , ��
(�)

are the 

biases and ℎ� is the network input. � is the activation function.  

In the construction of PDNN, it is important to carefully 
select a method for combining representations across network 
and to identify where these representations will be combined. 
Adaptation layers (as in the Figure 1) can be included to 
transform from one task to another. However, due to the limit 
of the computational complexity in the runtime SPSS system,   

a sharing weights strategy of the lateral connections  ��
(�:�)

 is 

adopted in our framework. All the rows of the matrix ��
(�:�)

 
are sharing the same row vector. Except the first layer, each 
node of in the same layer of the column k would receive the 
same bias. The real number of parameters in the matrix 

��
(�:�)

is ���� instead of  �� × ���� . 

2.3. PDNN structure with Multi-task learning methods 

MTL is also a way to train the PDNN model for the three 
different but related tasks. The above proposed PDNN 
structure can be applied by multi-task learning method if we 
change the training procedure and cost function. Squared loss 
is used as the cost function for each sub-task. All the three 
models are trained together with the global combined cost 
function: 

�� = ��� + (1 − �)��                  （2） 

where �� and �� are the error costs generated by the main task 

(spectrum) and the auxiliary task (F0) computed as mean 
squared errors (MSE). The coefficient � is a parameter that 
need manually adjusted. While in the training of PDNN, �� 

and �� are cost functions each task.  
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Figure 1 PDNN framework for SPSS. The arrows represent 
dense connections among each layer. Blocks a represent the 
adapation layers as lateral connections. Each color of 
columns are ‘frozen’ after training. Output 1 to 3 are the 
acoustic features output U/V, F0, LSP accordingly. Input  
ℎ� is the linguistic features, which is same for all the three 
columns. 
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3. Experiments and Results 

3.1. Database and features 

A Mandarin database, which contains 10,000 phonetically rich 
sentences from a professional female broadcaster, is adopted 
in this paper: 9000 sentences as training set, 500 sentences as 
validation set, and the rest 500 sentences are reserved as test 
set. Each sentence has around 13 words. 

 Acoustic features: All speech recordings are sampled at 
16 kHz, windowed by a 25 ms window, and shifted 
every 5 ms. 40th-order line spectral pair (LSP) 
coefficients, the fundamental frequency (F0) in log scale 
and voiced/unvoiced (V/UV) flag are extracted with 
STRAIGHT [25]. 

  Linguistic features: The phonetic and prosodic 
contexts of Mandarin are included: The phone identity, 
the position of a phone, syllable and word in phrase and 
sentence, POS of word, prosodic phrase, intonational 
phrase and sentence, the length of prosodic word, 
prosodic phrase, intonational phrase and sentence, etc.  

The input numerical features are normalized to the range 
of (0, 1]   and the frame level forced alignment upon the 
training data is processed with a HMM system implemented 
by HTS toolkit [12]. The target acoustic features are 
normalized to zero mean and unit variance before training. 
The dimension of the input linguistic features is 211. And the 
output contains acoustic features of each target, with 1 
dimension of U/V, 9 dimensions of logF0 with their and 123 
dimensions of LSP.  

3.2. Experimental step 

Six types of systems are implemented for comparison:  
 DNN-C: Standard DNN-based approach. All the 

acoustic features are concatenated together and treated 
as one stream. 

 DNN-I:  Each type of the acoustic features is trained 
independently with separate DNN models. 

 MTL-DNN: DNN approach with MTL method. One 
task is the prediction of U/V and F0. Another task is the 
prediction of spectral features (LSP). Different 
coefficients � are tested. 

 MTL-PDNN:  Using the similar PDNN structure to 
train all the targets synchronously by MTL method. We 
separate the F0 parameters into two parts: U/V and F0. 
Thus the combination considering the quantities of tasks 
and different prediction sequences can be concluded as 
following: (2: U/V F0, LSP), (2: LSP, U/V F0), (3: U/V, 
F0, LSP) and (3: LSP, U/V, F0). Different coefficients � 
are tested. 

 PDNN: The proposed PDNN method. Similar with 
MTL-PDNN, different quantities of tasks and different 
prediction sequences are tried. 

 PDNN-FT: After the training PDNN-3 (PDNN with 3 
tasks), a fine-tuning procedure is done by the MTL 
method. 

For testing, the outputs of all the systems are fed into a 
parameter generation module to generate smooth feature 
parameters with the dynamic constraints. Then formant 
sharping based on LSP frequencies is used to reduce the over-
smoothing problem in modeling. The speech waveforms are 
synthesized by LPC synthesizer with generated speech 
parameters finally. 

Our implementation is in TensorFlow [26] and we use the 
RMSProp optimizer with the global initial learning rate 0.0005 
and its Tensorflow defaults parameters. We choose ReLU [27] 
as the activation function. 

3.3. Objective evaluation 

In objective evaluation, the generated features are assessed by 
comparing the distortions between the features extracted from 
natural speech in the test set and the generated ones predicted 
from different systems. Specifically, the duration extracted 
from natural speech is used directly in prediction. Table 1 
shows the Objective measures of different models for speech 
synthesis. The architecture describes the number of nodes that 
DNN use in each type of systems. The number of the trained 
parameters is estimated. The coefficient � set in the table is 
the configuration that achieves the best performance in each 
module by MTL method.  

As illustrated in Table 1, the LSD of the proposed PDNN 
method has reduced by thirteen percent compared to the 
standard DNN methods. The MTL-PDNN method performs 
better than the standard MTL-DNN method in the all objective 
measures. The MTL-PDNN separates the prediction of the 
U/V, F0 and LSP in different sub-networks. The knowledge 
transfer flow is defined by the lateral connections. Compared 
with the MTL-PDNN, the proposed PDNN have also achieved 
improvements in the objective measures. It illustrates that the 
goal of the MTL method is to minimize the combined global 
loss function, which is relevant to the objective measures of 
spectrum and F0. Through epochs of training, it would reach 
the optimum. But it won’t be easy for each sub-target to reach 
its own optimum because other targets would also have an 
effect on the parameters of the entire networks. For MTL, it is 
hard to distinguish which parameters to learn the specific. On 
the contrary, it is easy to distinguish for PDNN because each 
task is trained by each sub-network. The transfer of memory 
depends on the lateral connections between these sub-
networks. Compared with PDNN, the PDNN-FT does not 
achieve better performance. Some objective measures remain 
unchanged or turn worse. The fine-tuning procedure breaks 
the optimum that the PDNN has achieved already. It indicates 
that the PDNN step by step training mode, which is training 
separately by memorizing the knowledge from trained tasks, is 
better than MTL method with global optimal training. 

One thing we need to consider is the sequence of targets. 
So we did sets of the experiments on the sequence of 
predictions. According to the results, we can draw the 
conclusion that which target is predicted later, the better 
performance we can get. Predicting the F0 parameters first has 
a better overall performance than predicting the spectral 
parameters first. We infer that it is more helpful for F0 
trajectory to reconstruct the spectrum envelope. 

Compared with PDNN-2, the PDNN-3 split the F0 
parameters prediction into two steps, which is to predict LF0 
based on the prediction results of U/V. Experimental results 
show that the performance of the U/V error and LF0 RMSE 
further improve after adding a task. It illustrates that the 
information process from text to human speech is a very 
complex mapping. With more intermediate variables and 
layers, the more information of speech can be provided for 
reconstruction.   

3.4. Subjective evaluation 

Figure 2 shows Mean opinion score (MOS) results for the 
naturalness of synthetic speech. 30 utterances from the test set 
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are randomly selected as the testing material. Each utterance is 
generated from the DNN-C, DNN-I, MTL-DNN, MTL-PDNN, 
PDNN and PDNN-FT systems, which is set to the 
configuration reaching the best objective evaluations. The 
testing speech are randomly shuffled to avoid preferential bias. 
30 listeners are invited to take part in the evaluation of 
synthetic speech. 

The proposed PDNN achieves best MOS results at 3.65, 
which indicates the ability of PDNN in improving the 
precision of acoustic model and naturalness of synthetic 
speech.  Compared to the PDNN, the synthetic speech by the 
PDNN-FT system has a slight drop in the naturalness of 
speech.  

 

Figure 2 Boxplot of Naturalness MOS results for six 
types of SPSS system 

3.5. Computational complexity analysis 

The sharing weights strategy make the quantity of parameters 
in the lateral connections increase at linear growth with the 

size of networks rather than in factorial growth. In the training 
stage, each column has to be trained one by one. The PDNN 
method would increase 2 to 3 times of training time compared 
with the standard DNN methods. In the runtime of the SPSS 
synthesizer, the delay caused by the lateral connections can be 
ignored.  

4. Conclusions 

In this paper, we present a progressive deep neural networks 
framework for speech synthesis, which could predict different 
types of acoustic features one by one. The PDNN is immune 
to forget the previous memory on processing the linguistic 
features. Each training process has its own train criterion. So 
each type of acoustic features can be trained to its own 
optimum. PDNN with different topology, quantity of 
hierarchies, MTL using similar PDNN structure, and fine-
tuning after PDNN3 by MTL are compared in the experiments. 
Compared to the standard DNN-based and MTL-DNN with 
methods, both objective and subjective experimental results 
demonstrated the better performance of the PDNN. 

Our future research will try to use other networks, such as 
recurrent neural networks and BLSTM, to replace the DNN 
for acoustic model. Besides, the idea of progressive neural 
networks can be applied to other fields in speech synthesis, 
such as voice conversion. 
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Table1: Objective evaluation for the system DNN-C, DNN-I, MTL-DNN, MTL-PDNN, PDNN and PDNN-FT. RMSE of LogF0 is computed in 
Logarithm frequency. V/UV error means frame-level voiced/unvoiced error. LCD is Linear Cepstral Distortion. 

Model Architecture 
Parameter 
(million) 

Coefficient 
� 

LSD 
(dB) 

V/U Err 
(%) 

LogF0 RMSE 
(Hz) 

DNN 

DNN-C 5*1024 5.24 / 7.83 5.37 0.225 

DNN-I 5*1024*2 10.49 / 7.26 5.29 0.218 

MTL-DNN 5*1024 5.24 0.6 7.18 5.26 0.207 

MTL 
-PDNN 

2:LSP,U/VF0 5*1024*2 10.50 0.7 6.58 4.98 0.207 

2:U/VF0,LSP 5*1024*2 10.50 0.6 6.53 4.96 0.211 

3:LSP,U/V,F0 5*512*1 +5*1024*2 11.82 0.9 6.56 4.98 0.203 

3:U/V,F0,LSP 5*512*1 +5*1024*2 11.82 0.5 6.48 4.92 0.208 

PDNN 

2:LSP,U/VF0 5*1024*2 10.50 / 7.26 4.93 0.194 

2:U/VF0,LSP 5*1024*2 10.50 / 5.86 5.29 0.218 

3:LSP,U/V,F0 5*512*1 +5*1024*2 11.82 / 6.79 4.63 0.191 

3:U/V,F0,LSP 5*512*1 +5*1024*2 11.82 / 5.83 4.63 0.196 

PDNN 
-FT 

3:LSP,U/V,F0 5*512*1 +5*1024*2 11.82 0.7 5.98 4.78 0.193 

3:U/V,F0,LSP 5*512*1 +5*1024*2 11.82 0.4 5.86 4.72 0.194 
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